

Paula Bezerra Rocha Garcia Rafael Leme Costa Eduardo Nunes Alvares Pereira

# Automated label placement algorithm based on EUROCONTROL's HMI requirements for air traffic control system



## Motivation







## Label overlapping problem is **NP-complete**



## Definitions





# Requirements





Conflicts priority defined by EUROCONTROL

4 possible angles: 45°, 135° (default), 225°
or 315° from top of screen or speed vector

Controller can always move a label manually





## Atech's solution for an



#### Literature review



#### Force-based model

Model objects as electrically charged particles that attract and repel each other





## Cluster-based model

Group tracks, discretize area around the track and allocate the label in the cell of the lowest cost



# Model based on navigation functions

Avoid collision between the robot (label) and the obstacles

(other symbols);

*Robot* → punctual,

Obstacles → rectangles;

Obstruction polygon



(KAKOS AND KYRIAKOPOULOS, 2005)



# Model based on Probabilistic Roadmap

Create a graph with subsets of all available positions and choose the shortest path







# Proposed approach



GRUPO EMBRAER

Obstruction polygon using Minkowski sum: translations applied to elements



(SATO, 2011)



## In our case, all symbols become rectangles:





# Proposed approach



# Occupancy grid



| Type of overlap | Meaning          |  |  |
|-----------------|------------------|--|--|
| 0               | free position    |  |  |
| 1               | track            |  |  |
| 2               | label            |  |  |
| 4               | leader line      |  |  |
| 8               | speed vector     |  |  |
| 16              | forbidden region |  |  |
| 32              | callsign         |  |  |



# Occupancy grid





Analysis by quadrants



# Proposed approach



Relaxation: penalties



| Type of overlap                                             | XOR          | Adapted result | Penalty |
|-------------------------------------------------------------|--------------|----------------|---------|
| callsign + X                                                | 32 ⊕ X       | 32 – 40 or 48  | 150     |
| label + track                                               | 2 🕀 1        | 3              | 40      |
| label + label                                               | 2 $\oplus$ 2 | 2              | 30      |
| leader line + leader line                                   | 4 ⊕ 4        | 4              | 25      |
| leader line + label                                         | 4 ⊕ 2        | 6              | 20      |
| label + speed vector                                        | 2 ⊕ 8        | 10             | 15      |
| leader line + track                                         | 4 ⊕ 1        | 5              | 10      |
| leader line + speed vector                                  | 4 ⊕ 8        | 12             | 5       |
| label + free position <i>or</i> leader line + free position | 0            | 0              | 0       |

# Model's validation: proof of concept using MATLAB







- Fixed labels
- Movable labels
- Repositioned labels

# Model's validation: proof of concept using MATLAB







- Fixed labels
- Movable labels
- Repositioned labels







Conflict between two overlapped labels is 036 solved Δυ**ρες** 197/4











Rotated to the default position (135° from the top of the screen and default leader line's length)







Rotated to the default position (135° from the top of the screen and default leader line's length)









# Algorithm's runtime



## Conclusion and future work



✓ Label-overlapping problem

√ 8 kinds of overlap

■ The solution is efficient → real time

Easy inclusion of relaxation rules



