
THE MODEL-DRIVEN DEVELOPMENT APPROACH & FORMAL

SPECIFICATION FOR AIR-TRAFFIC CONTROL SYSTEM

OPERATIONS: PRACTICAL COMMENTS AND CASE STUDIES

26/10/2015

Fabio Seiti Aguchiku - Atech

Rafael Leme Costa - Atech

Eric Conrado de Souza - Atech

Newton Maruyama – POLI/USP

• Motivation

• Introduction - Models

• BridgePoint - xtUML

• Formal Verification – FDR3 & AutoFocus3

• MDD Issues

• Conclusion

Agenda

Corporations want systems that work!

... as fast as possible,

 as cheap as possible and

 as easy to change as possible...
System development is difficult!

• take overlapping and conflicting requirements

• invention of good abstractions from those requirements

• fabrication of an efficient, cost-effective implementation

• clever solutions

• succesful conclusion at the lowest possible cost in time and money

Motivation

(Balcer & Mellor, 2002)

(MCCONNELL, 2004)
Code Complete: A
Practical Handbook of
Software Construction.

Cost of fixing the defect Detection of defects

Introduction of defects Requirements

Architecture Construction System Test Post-Release

Requirements 1x 3x 5-10x 10x 10-100x

Architecture - 1x 10x 15x 25-100x

Construction - - 1x 10x 10-25x

Motivation

“The lack of an integrated view often

forces developers to implement

suboptimal solutions.” – Douglas C.

Schmidt (2006)

“Model to have a conversation.” –

Craig Larman and Bas Vodde

“The sciences do not try to explain, they

hardly even try to interpret, they mainly

make models. ... The justification of

such a mathematical construct is solely

and precisely that it is expected to work.”

— John von Neumann

Motivation

Air Transportation domain:

• Software intensive

• Computationally distributed

• Great complexity

• Represents great potencial for accidents

Safety-critical systems

Motivation

Intro – From Document-centric to Model-centric

“The underlying motivation for MDD is to improve productivity.” – Atkinson (2003)

“Separate those things that change from those things that do not” –

IBM-Rational Software Group (2008)

• Things that change rapidly:

Technology, Hardware Platforms, Sensor Technology,

Operating environments, Connectivity

• Things that do not:

Problem Domain semantics,

Relations among domain concepts

“Free architecture from implementation details – conceptual architecture and

technology decisions are decoupled, making both easier to evolve”

(Volter, 2010)

Models

Model

Transformer Model

Documentation

Model

Binary

Generation

Requirements

Code

Configuration

Versioning

Verification &

Validation

Reuse

Tools

Integration

Simulation

Communication

Transformation

Compilation

Mentor Graphic’s BridgePoint
 (ver.4.1.8Demo)

It is a composition of...

• Open-source UML model editor
– xtUML Modeling Language (UML profile)

• a verifier (providing simulated execution capability)

– Model debug

– Animated features during model execution (simulation)

 providing early model verification

– allows integration with external code

• set of model compilers (providing translation)

Code generation functionality into C, C++, System C, Java

INACTIVE

PRE-ACTIVE

ACTIVE

TERMINATED

ARCHIVED

“Especificação de Requisitos de Sistema

do STVD do ACC-AO”

FDP System for ATC

 Flight Data Processing

BridgePoint – The benchmark problem

PLN

States

Not-Ctrl.

Announced

Controlled

Wait

Transf. Prop.

Transf. Donor

Transf. Recept.

Transfered

Sub-states

RPL

FPL

CPL

DPL

COM
Types

Components

diagram

Modeling Tools - BridgePoint

Class diagram

Gerenciador

State-Machine

Model

simulation

logfile

PLN

states

Active sub-

states

OAL

Achievements:

• Data structure was devised to emulate many instances of flights

• Verifier functionality tested (Model Debbuger)

• Testing: automatic and man-in-the-loop

• Logging Interface (Java External Entities)

• User Interface (Java Realized Component)

• Code Generation (compiled & tested)

BridgePoint – The benchmark problem

Specification of a system properties, using a language defined by

mathematical logic

• Improve system reliability

• Based on:
• process algebra,

• first order logic,

• temporal logic,

• set theory...

• Each language represents a view of the system – languages are

complementary

• Formal Verification

Formal Specification

Formal Verification

Communicating Sequential Process (CSP) – process algebra:

Description of programs or processes that communicate events,

from a set, within an environment

FDR3 - Failures Divergence Refinement (a refinement checker)

Constructing equivalent refinement checks (models)

• traces

• failures

• failures-divergences

Properties

• deadlock-freedom

• livelock-freedom

• Determinism

Single

Process

Formal Verification

State Explosion Problem:

• Two Flight Plan processes;

• Three Buffer messages;

Single

Process

Formal Verification

AutoFocus3

Funcionality:

• Requirements Engineering

• Modeling and Simulation

• Code Generation

• Deployment

• Testing

• Formal Verification – NuSMV

• Model Checking CTL/LTL property

Formal Verification

Case Study

FDP System for ATC

 Flight Data Processing

• Transferal of a flight plan from one ATC to another

ACTIVE

NOT ACTIVE

IN TRANSFERENCE

PLN

Status

Preactive

Active not Ctrl.

Active Ctrl.

Act. Transf. Prop.

States

Formal Verification

Case Study

FDP System for ATC

 Flight Data Processing

• Safety properties:

• Active x Active

• Active - In Transference to Not Active – Active

ACTIVE

NOT ACTIVE

IN TRANSFERENCE

FPSM-1

ACTIVE

NOT ACTIVE

IN TRANSFERENCE

FPSM-2

Formal Verification

AutoFocus3

AutoFocus3

– NuSMV

Issues related to MDD:

• UML – Abstraction level

• UML 2.0 – low acceptance

• Code generation

“8 Reasons Why Model-Driven Approaches (will) Fail” (DenHaan, 2008; 2009)

“Model Driven Development Misperceptions and Challenges” (Portier, Ackerman, 2009)

MDD Issues

“Some companies have reported great success with it, whereas

others have failed horribly”

(Whittle, Hutchinson, Rouncefield 2014)

Conclusion

Gain from MDD:

• Reuse

• Documentation

• Maintenance

Verification:

• Mapping of methods, modeling tools

• Model execution (simulation, debugging)

• Formal verification – model checking

• Model refinement

“However, used in moderation and where appropriate,

UML and MDA code generators are useful tools, although

 not the panaceas that some would have us believe”

(Thomas, 2004)

Brasília

www.atech.com.br

Rio de Janeiro São José dos Campos São Paulo

