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ABSTRACT 

Future Air Traffic Control related operational procedures and systems will require greater 

airspace occupancy and safety features. These systems should provide increased aircraft position 

prediction accuracy intended for trajectory planning and conflict detection. This present note 

conveys remarks and preliminary results of ongoing investigation into improved models of the 

flight dynamics for future ATC/ATM systems. We review some requirements related to the 

trajectory prediction problem and illustrate significant results concerning the application potential 

and flexibility of use of flight dynamics modeling for trajectory prediction in air traffic control and 

management operations when contrasting these with real flight data.  
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1. INTRODUCTION 

The outlook for worldwide passenger 

origin-destination air travel in the next 20 

years corresponds to a growth of 1.8 to 2.8 

times current scenario figures, depending on 

adopted border policies throughout (Pearce, 

2014).
2
 Similarly, the forecast estimates for 

the passenger air travel between Brazil and 

the U.S. (one important destination for 

Brazilian tourists) is expected to grow at an 

average of 4.4% per year up to 2035, 

according to the FAA Aerospace Forecast: FY 

2015-2035, published annually. Domestic and 

international passenger transportation in the 

Brazilian airspace is expected to grow 109% 

in the 2012-20 time window (ABEAR, 2014). 

In order to achieve airspace capacity 

demands, while increasing safety measures of 

air transportation operations, knowledge 

dissemination processes amongst stakeholders 

and advanced ATM/ATC planning concepts 

and techniques are in the process of being 

revisited accordingly by the international 

ATM/ATC community. This effort aims to 

improve flight efficiency and accommodate 

operations management in a complex, future 

air traffic scenario. To support the 

aforementioned and other related operations 

on the ground and in the air, accurate aircraft 

trajectory prediction capabilities must be 

designed, developed, implemented, and 

deployed. 

Trajectory prediction (TP) plays an 

important role in the context of modern Air 

Traffic Control and Management operations. 

Furthermore, TP represents a core 

functionality of many control and planning 

system services in current modernization 

programs, such as NextGen and SESAR. 

Shuster & Porreta (2010) corroborate the 

above claims: “Advanced decision support 

tools based upon TP will reduce controller 

workload, one of the key factors limiting 

airspace capacity.” 

It is expected that accurate prediction of 

flight trajectory and planning, through 

trajectory optimizations, will support a more 

rational use of airspace, will increase the 

efficiency of the air transportation 
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management, and will contribute to reduced 

green-house related emissions. Moreover, 

these benefits will contribute to cost reduction 

for aircraft operators and ANSP and promote 

higher quality service for air transportation 

users. All the previously mentioned benefits 

are part of the SIRIUS project objectives, the 

solution pushed forward by Brazilian 

authorities to promote the needed 

infrastructure and support for future air travel 

demands. It is interesting to observe that, 

because domestic and international flights are 

tightly coupled almost everywhere, this is a 

global modernization effort, with worldwide 

implications, and is largely influenced by 

international trends and local (e.g., Brazilian) 

projected airspace demand referenced on 

current growth estimates. 

The main goal of the present study is to 

disclose initial awareness about ongoing local 

research into practical trajectory prediction 

associated issues. A prediction engine based 

on the modeling of aircraft flight dynamics is 

considered. In this preliminary presentation, 

one principal concern is to discuss some of the 

challenges and effort connected to trajectory 

prediction accuracy evaluation with real flight 

data derived from the Brazilian ATC system
3
. 

Accuracy, however, is not the only chief 

concern here; the associated flexibility of use 

of the flight model as a trajectory predictor is 

likewise being investigated. We envision that 

this initial study will encourage further 

dissemination of knowledge in the present 

field of expertise. We also show preliminary 

results concerning the application potential of 

flight dynamics modeling for trajectory 

prediction in air traffic control and 

management operations.  

The remainder of this paper is organized 

as follows: a brief overview of related 

trajectory prediction ideas and concepts are 

given in the following section. The following 

section introduces some prediction problem 

requirements which are being used in ongoing 

research. The next section, Flight Modeling, 

presents some details of the flight dynamics 

modeling employed as the prediction module. 

Prediction evaluation then follows in Section 

5, where generated trajectories are contrasted 
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to flight tracks. The core contribution of this 

note is undertaken in the Comments Section. 

Final remarks are given in the last section. 

2. TRAJECTORY PREDICTION  

Torres wrote in his 2010 DASC 

conference paper about the importance of 

accuracy of predicted trajectories in modern 

tactical and planning air traffic systems: 

“Because of the foundational reliance on 

accurate gate-to-gate, four dimensional 

trajectory (4DT) predictions in TBO, 

trajectory predictors (TP) will have to meet 

stringent accuracy performance 

requirements.” 

Moreover (Torres, 2010): “A TP is not a 

monolithic algorithm but rather a collection of 

algorithms each specialized to solve a 

particular modeling problem to build a 

trajectory. Thus, it is envisioned that as 

existing TPs evolve towards meeting the 

requirements to support TBO, there is need to 

evaluate the impact of individual factors to 

trajectory accuracy to be able to focus 

algorithmic improvement efforts where they 

have more relevance.” The above quote 

defines trajectory prediction and brings one 

important recommendation, namely, that the 

influence of specific factors should be 

identified and well understood and that effort 

must be concentrated for improvement based 

on these same factors, when required. This 

note is a first step towards this end goal. 

Prediction is not a present necessity in 

ATC systems alone. Prediction for strategic 

operation, or the planning of airspace 

utilization, perhaps will show to be an even 

more critical requirement in future 

management systems relative to tactical 

control. In this regard, Nuic et. al. (2005) state 

that: “An efficient Air Traffic Management 

(ATM) system requires planning of traffic 

flows that rely on accurate estimation of 

aircraft performances.” 

Many are the factors that affect TP 

functionality and performance. Input to the 

predictor usually encompasses the following 

information: 

 Flight plan and amendments: also 

termed Flight Intent data (Eurocontrol, 

2010); 

 Aircraft Intent data – speed regime, 

aircraft mass, thrust settings, etc.; 

 Meteorology and atmospheric data; 

 Aircraft performance data. 

The output of the prediction process is a 4D 

trajectory with predicted future aircraft states 

including the corresponding intermediary and 

final estimated times of arrival (ETA). 

A brief description about the aircraft 

type, onboard navigational equipment, the 

expected route waypoints, and anticipated 

cruise altitude and airspeed are all considered 

in standard flight plans. These are, however, 

insufficient information for satisfactory 

trajectory estimation because flight plans do 

“not contain enough information to build from 

it an unambiguous rendition of the flight path 

in 4D”, (Klooster, 2010). Intent data 

complements the flight plan with any type of 

information that can impact the future path of 

the aircraft and its exactness for TP is critical, 

(Schuster, 2010). Examples of intent data 

include the flight plan itself, controller issued 

altitude and time constraints, and aircraft 

guidance mode settings, (Vivona et. al., 

2008). Speed profile intent, thrust and drag 

performance factors, aircraft weight, and 

maneuvering procedure of the aircraft over the 

trajectory prediction time horizon are also 

considered intent data. These may vary 

greatly based on the client application’s 

operational environment and include pilot and 

controller preferences and objectives. 

3. PREDICTION REQUIREMENTS 

Trajectory prediction requirements deal 

with the specification about functional 

necessary conditions and performance 

measures concerning the estimation of aircraft 

position in terms of systems point-of-view 

and performance metrics, respectively. It has 

matured over the years; refer to the 

Eurocontrol (2010) reference report on this 

matter.  

The TP system specifications require 

that a number of functionalities be 

implemented in order to provide service based 

information to other ATC/ATM systems. 

Transition take-off runway to en-route 

network of airways (SID charts), transition 

from en-route structure to touch-down runway 
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(STAR charts), strategic and tactical flight 

constraints, conditional routes, to name a few. 

Additionally, TP performance should be 

evaluated by statistical analyses on a 

significantly large sample of “truth data”, 

usually in the form of radar tracks. S. Torres 

(2010) recently wrote that: “... to quantify 

trajectory accuracy is to compute the 

deviations of the predicted lateral and vertical 

position and time along the trajectory relative 

to a reference ‘as flown’ 4D path”. 

Notice that TP is an active area of 

research; consult Mondoloni & Kirk (2013) 

for a recent reference. Very recently the US-

Europe transatlantic cooperation agreement 

has been ratified
4
 because of the perceived 

acknowledged benefits attained with both 

NextGen and SESAR programs. TP is an 

ongoing research theme for these two 

modernization endeavors. 

The kinetic approach to trajectory 

prediction is ideally suited to airborne FMS 

related decision support functionality since 

intent information is readily available. Ground 

air support systems require some intent data to 

be downlinked for TP, though. However, it is 

reported that: “An evaluation of the 

performance of kinetic versus parametric 

models in the context of traffic flow 

management (TFM) applications indicates 

that kinetic models exhibit better accuracy 

performance”, (Torres, 2010). With the aid of 

digital data-link – like ADS-C and upgraded 

CPDLC – and dissemination of flight related 

information – such as aeronautical (AIXM), 

flight (FIXM), weather (WXXM), and the like 

– to various stakeholders, accurate prediction 

and planning is expected to generalize and 

become routine. Satellite navigation 

technologies already provide planning 

execution aids for a more flexible flight 

realization. The advantages of information 

dissemination are evident, as seen in 

(Mondoloni, 2013), for example, where 

identified TP performance factors have been 

shown to improve in terms of accuracy, 

besides clear benefits towards Conflict 

Detection & Resolution and Traffic Flow 

Management. 
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In Schuster & Porretta (2010) flight 

measured wind data is claimed to enhance TP 

accuracy. More generally, real-time, airborne 

measured wind-field data could be transmitted 

to and combined with data collected by 

Aeronautical & Meteorological Information 

Services and then shared by the ground-to-

ground network with Air Navigation Service 

Provider (ANSP) and Air Traffic Service 

(ATS) providers, etc. for improved accuracy 

of TP and flight planning and control 

processes. Interoperability issues arise and 

should also be appropriately addressed, 

(Mondoloni, Bayraktutar, 2005). 

4. FLIGHT MODELING 

Prandini and Watkins (2005) present, on 

page six of their HYBRIDGE report to the 

European Commission, an unavoidable 

problem related to prediction: “One of the 

difficulties in predicting the aircraft future 

position consists in modeling the 

perturbations influencing its motion. The 

actual motion of the aircraft is in fact affected 

by uncertainty, due mainly to wind, but also 

to errors in tracking, navigation, and control.” 

The HYBRIDGE project (Glover and 

Lygeros, 2004) employs a six degree-of-

freedom nonlinear dynamics model of civilian 

aircraft flight. Modeling simplifying 

assumptions or hypotheses include a flat earth 

model, i.e., the effect of earth surface 

curvature is negligible, trimmed flight 

conditions, and aircraft as a point mass model 

to list a few. The resulting aircraft model is a 

set of continuous-time ODEs
5
 defined by: 

 

ż(t) = f(z(t),u,t),  z0 = z(t0), 

 

where f is a general non-autonomous mapping 

between the aircraft state z, input u, time t and 

the time rate of state ż. A minimal realization 

of the state vector z usually comprises aircraft 

position written in the Cartesian 

representation of the Earth geographical 

coordinates
6
, altitude, aircraft true airspeed, 

heading, and aircraft mass. Jet engine thrust, 

roll angle, and wind velocity vector are 
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considered model inputs and are lumped 

together in the input vector u.  

Atmospheric modeling is integrated to 

the above aircraft flight model. This modeling 

provides conversion between aircraft 

calibrated speed and true airspeed figures, 

provides atmospheric states’ values for the 

computation of lift & drag forces acting on the 

aircraft model and provides intermediate 

states for determining mass variation 

dynamics. See also Porretta et. al. (2008).  

Some intent information is coded into 

the model in the form of aircraft heading 

behavior. Feedback loops are also in place to 

reject disturbances and regulate cross-track 

and heading deviations to zero w.r.t. a 

nominal trajectory given by the expected 

flight route. 

Various are the sources of uncertainty 

related to the flight dynamics model described 

above. Some of these are listed below: 

 Aircraft mass at take-off (TOW); 

 Aircraft speed at any given time of 

flight; 

 Wind vector, direction and 

intensity, at any given time and 

altitude. 

The impact of the first two sources on 

prediction can be somewhat diminished with 

the help of an estimator coupled to the aircraft 

model itself. One noteworthy downside to this 

solution is the increase of modeling 

complexity and the need of extra tuning of 

parameters. Appropriate communication 

between Airline operators, ANSP and control 

centers of aircraft mass at take-off, in the first 

case, and continuous air-ground data link, in 

the second case, could represent simple and 

efficient solutions. Sensor network fusing data 

from ground stations, satellite, and airborne 

vehicles could mitigate wind uncertainty. 

Alternatively, one could employ a stochastic 

wind model superimposed to the deterministic 

average estimates obtained from historical 

records. 

A set of deterministic, point-mass 

equations of motion, based on the dynamics 

presented above, was employed to model the 

physics of flight of an arbitrary airliner. 

Prediction, therefore, involves the solution of 

the continuous-time ODEs with initial values 

z0, or Initial Value Problem, yielding the state 

z(t) as a function of time. This is known in the 

literature as the kinetic approach to trajectory 

prediction. The time horizon for this estimate 

varies from problem to problem. For example, 

gate-to-gate prediction would involve a time 

horizon of many hours; while conflict 

detection would require flight state estimation 

of 20 to 40 minutes of look-ahead-time from 

current aircraft position. 

A numerical trial for a fictitious aircraft 

flight of approximately 4h40 in duration is 

depicted in Figs. 1-3. Observe that the aircraft 

is performing an arbitrary descent procedure, 

Fig. 2, and that it slows down to 

approximately 184knots (340km/h) before it 

speeds up again, Fig. 3. The zig-zag motion 

projected onto the horizontal plane, in Fig. 1, 

shows the effect of guidance laws in use 

together with the aircraft dynamical model. 

These prediction results also provide mass 

variation dynamics during flight (not shown 

below). 

 

Figure 1: Horizontal displacement of a fictitious 

flight: Time curves and motion on the x-y plane. 

Graphics on the horizontal plane contain waypoints 

in red asterisks, routes in green lines and the 

generated flight trajectory in blue curves. 

5. PREDICTION EVALUATION 

The kinetic prediction engine is being 

evolved within a flexible, efficient 

development framework environment which 

can accommodate a great number of 

functionalities for both tactical and strategic 

operations and off-line analysis. A prototype 

system for improved and new ATC/ATM 
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services will be fully available soon. A short 

description for this prototype system is given 

next. 

 

Figure 2: Aircraft flight vertical displacement w.r.t 

time. 

 

Figure 3: True Airspeed (TAS) for the fictitious 

flight simulation. 

 

The ATC system configuration 

parameters and general settings data base, or 

DBS, is initially read and its contents are 

made available through the DDS bus to other 

network hubs: 

 FDP system configuration settings; 

 Air space structure for the FIR. 

Route extraction then follows, yielding 

a sequence of way-points in three-dimensional 

space. Way-point values regarding position 

geographical coordinates and altitude are 

subsequently input to the predictor. In this 

study, the kinetic model based on aircraft 

flight dynamics was employed as a predictor 

engine, as illustrated in Figure. 4. 

The aircraft flight dynamical model 

based predictor was implemented initially in a 

development environment, Scilab and Matlab, 

for algorithmic verification and validation 

purposes. High-order numerical integration 

methods were utilized to solve the aircraft 

flight equations of motion to yield numerical 

solutions with satisfactory accuracy in the 

short and medium term. Satisfactory 

implementation solutions are currently being 

implemented and tested in the framework 

environment, just mentioned, where the 

prediction algorithm will provide estimated 

flight data to be displayed in a virtual three-

dimensional, georeferenced information 

system. This geographical environment is an 

integrating part of the extensive capabilities 

framework being developed at Atech. Figure 

5 gives a snapshot of the current system, 

where general airspace components – such as 

airways, terminal areas (TMA), ADS-B 

tracks, and conditioned airspace – are 

displayed in evidence. 

 

 

Figure 4: Trajectory prediction process and 

analysis. 

 

Besides the uncertainty associated to 

flight modeling, some of which were briefly 

mentioned above, other sources of uncertainty 

are present, such as those related to ATC 

systems operations and flight intent. The 

effect of waypoint fly-by or fly-over 

maneuvers is negligible since RNAV 

navigation is in effect over the Brazilian 

continental FIRs. The flight dynamics model 

used for the kinetic predictor was devised 

with the capability to implement either fly-by 

or fly-over modes. 

Unit conversion and coordinate 

transformation from geographical to Cartesian 

coordinate systems can become additional 

sources of error if not dealt with accordingly. 

Although there are many coordinate 

transformations available in the literature, the 

same projection technique should be used for 

trajectory performance evaluation as the one  
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Figure 5: Capabilities framework being developed at Atech. Some airspace structure is being displayed, in 3D 

mode, in the form of airways, TMAs, conditioned airspace, and ADS-B tracks. 

 

employed in the ATC system when REV files 

were generated. 

Tracking data is yet another source of 

uncertainty when performing trajectory 

comparison. Track history from REV files 

were filtered for tracks with high values of 

quality factor property to be used in this 

performance evaluation. 

5.1. Input Data to Prediction 

Flight data used to input the prediction 

engine were taken from a small available 

database of flight recordings of real, 

performed commercial flights. These flight 

recordings are a collection of flight related 

data stored in the, so called, Revisualization 

or REV files, which are read for flight plans 

(PLN) historical reports and for radar-tracking 

system reports. Flight data taken from real 

flights were used to evaluate the performance 

of the kinetic prediction engine described 

previously.  

A selection of flight instances was 

assembled from the pool of flight plans read 

from REV files. This selection involved both 

PLN and flight tracks reports. Flight instances 

were based on flight “indicative” and, more 

effectively, the SSR code, besides EOBT and 

ADEP. To date, our selection criteria 

considered only nominal flights without non-

typical issued instructions or actions involving 

inflight detours or rerouting by the controlling 

authority. The reason for this criteria adoption 

is simply to facilitate analysis, on current 

research stage, by avoiding ambiguity in the 

execution of these rerouting instructions. 

Despite the above criteria and the lack 

of precision provided by controller issued 

instructions, altitude clearance during cruise 
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flight phase are not being ruled out from this 

initial selection, however. Track data history 

analysis has shown that it is possible to reduce 

ambiguity in altitude clearances. Further 

investigation will pursue the use of data from 

any flight plan, however complex it may be. 

A selection of flights was made with the 

intent of showing prediction performance. 

Three flights were selected for this study. The 

first flight, referenced as XXX1111, departs 

from Goiania (SBGO) towards São Paulo 

(SBSP) at 11h50 (EOBT) with an estimated 

time of flight of 1h15 (EET) and a cruising 

flight level of FL390 at 450kn. The second 

flight, YYY2222, departs from Confins 

(SBCF) towards Manaus (SBEG) also at 

11h50 (EOBT) with an estimated flight time 

of 3h32 (EET) and a cruising flight level of 

FL340 at 462kn. This flight involves two 

FIRs and analysis here will cover only the 

FIR Brasilia branch. The third flight, 

ZZZ3333, departs from Guarulhos (SBGR) 

towards Ribeirão Preto (SBRP) at 11h55 

(EOBT) with an estimated flight time of only 

00h41 (EET) and a cruising flight level of 

FL240 at 342kn. Flight trajectories projected 

onto the Cartesian horizontal plane are shown 

in Figure. 6. Notice the influence of RNAV 

navigation on the geometry of flight 

trajectories. Trajectories are characterized by 

a more rectilinear form or feature, in contrast 

to a trajectory with sharp corners given by the 

flight route which is built by the linearly 

interpolation of the navigational aids (navaid) 

themselves. Maximum flight track distance 

from the corresponding navaid is smaller than 

2NM, well below the RNAV-5 stipulated 

threshold currently valid over the continental 

Brazilian territory and in accordance with 

present legislation. 

 

 

Figure 6: Route and Flight Track analysis for flight XXX1111. 
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For some selected flights, it was not 

uncommon to find altitude (Mode C) and 

speed data to be characterized by an 

unexpected variation which hampered further 

use in the current criterion described above. 

Flight level (Mode C) data is given with 

a one hundred feet accuracy resolution. A 

finer unit of measure would ease prediction 

comparison. We’re currently looking into this 

issue. 

The radar system records Ground Speed 

(GS), i.e., speed relative to ground which is 

generally perturbed by wind. In order to 

obtain True Airspeed (TAS), which is used 

directly as a reference aircraft speed in the 

dynamical flight model, wind data must be 

provided for that location, date and time, and 

flight altitude. 

5.2. Prediction Results 

In current ATC systems, Flight routes 

are subsequently generated by the ATC 

system Route Extractor from PLN 

information as a sequence of waypoints 

linking departing to destination airports. The 

resulting routes, one for each PLN, are used to 

input the Trajectory Predictor (TP) which is 

responsible for computing the time estimates 

for aircraft “rendezvous” with route 

waypoints at flight level. Time estimates for 

aircraft over each route waypoint are now 

available and serve as reference for intent 

input to the predictor engine. 

In this study, the flight plan routes were 

fed into the kinetic predictor which generated 

the corresponding sets of estimates for the 

same sequence of routes’ waypoints. 

Waypoint estimates from the kinetic predictor 

was then contrasted to the waypoint flight 

times derived from multi-radar tracking data 

for comparison.  

Aircraft mass and wind feeds were 

estimated for use in the kinetic predictor 

model. At this point a naive estimate was 

adopted based on historical records, though 

more elaborate online identification process 

could be used. 

Departure and arrival route procedures 

can be considered and implemented within the 

prediction modeling solution through the 

modeling of SID and STAR charts data, for 

example. Flights with ATC vectoring during 

arrivals were specifically avoided due to 

difficulty in reproducing intent with the flight 

dynamical model. 

Trajectory evaluation was initially 

tested for the cruise phase. Climb and descent 

phases were subsequently evaluated. This 

strategy was adopted in order to better 

understand the flight dynamical model 

sensitivity to parameter tuning for a constant 

speed, leveled flight before considering a 

relatively more complex model tuning 

scenario, involving climb, descent, and turn 

maneuvers.  

5.3. Prediction Performance Analysis 

The kinetic approach to prediction 

addresses many important flight configuration 

parameters and is sensitive to inputs and 

parameters. The effect of aircraft mass on 

climb and descent rates is noteworthy. Wind 

velocity plays an important role in prediction. 

It affects aircraft motion on all three 

translational axes directly and, as a 

consequence, prediction entails accurate wind 

estimation. 

Figures 7 through 9 illustrate the 

qualitative comparison of the predicted 

trajectories against truth data given by 

performed flight XXX1111; the first of the 

three case studies presented previously. These 

trajectories were created by inputing a small 

sequence of twelve (12) flight track data, 

somewhat evenly distributed over the flight 

period considered, to the predictor engine. 

The motivating objective behind this 

comparison is to show some level of accuracy 

performance the kinetic flight model is able to 

deliver by reproducing real flight trajectory 

with a small number of input waypoints as the 

main representation of intent. A standard 

prediction process would, of course, receive 

route waypoints as input; not track data as in 

this demonstration trial. These twelve 

waypoint coordinates were then transformed 

into continuously differentiable class 

functions to be used by the guidance and 

control laws in the flight model for input 

tracking. Comparison of predicted horizontal 

motion for flight XXX1111 w.r.t. flight track 

data is seen in Fig. 7. Notice that for the final 
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portion of flight, related to approach and 

landing at ADES, predicted trajectory and 

track data diverge significantly. This can be 

explained by flight guidance being performed 

through a STAR chart, and this intent 

information is not implemented in the 

predictor engine. Similar divergence effect of 

predicted and real trajectory curves is 

observed in Figs. 8 and 9, where altitude and 

TAS are plotted with time. 

 

 

Figure 7: Comparison of the horizontal motion for flight XXX1111 trajectory (radar tracks) and predicted 

trajectory. Notice, once more, that the predictor was intended to reproduce flight trajectory in this evaluation. 

 

It is understood that there is no need for 

normalization of trajectories, as suggested in 

(Torres, 2010), before the utilization of 

metrics for the comparison analysis since the 

trajectories under scrutiny come from the 

same center, do not originate from distinct 

sources, and are generated under the exact 

same conditions (i.e., in a research 

investigation and procedures). Refer also to 

(Mondoloni, Bayraktutar, 2005). 

5.4. Spatial Performance Analysis 

This section is focused on the 

performance analysis using spatial metrics. A 

few spatial metrics were selected and used for 

the comparison of TP performance 

evaluations against flight track data:  

 Distance Errors (DE); 

 Altitude Errors (AE). 

Heading errors (HE) are also a means to 

evaluate prediction performance. Temporal 

performance metrics, such as the Time-of-

Arrival errors (TAE), are also being currently 

considered in this research, though a 

presentation of the evaluation results and the 

corresponding in-depth discussion 

accompanying it will be postponed to a 

forthcoming opportunity. One interesting 

subject reserved for a future discussion stems 

from the search effort for a practical definition 

to trajectory accuracy in the context of Free 

Flight, see (Navarrete, 2006) and the 

references therein. In the case of gate-to-gate 

based operations, the flight and taxi duration 

time could be used as a definitive measure to 
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quantify temporal trajectory performance, 

amongst other metrics. A relatively more 

interesting situation would be to measure 

performance for arbitrary segments of 

trajectories. 

 

Figure 8: Altitude comparison of flight XXX1111 

and predicted trajectories. 

 

Figure 9: True Airspeed (TAS) comparison of flight 

XXX1111 and predicted trajectories. 

 

A Distance Errors (DE) metric is 

introduced as an alternative, for this analysis, 

to along-track and cross-track errors metrics 

generally employed for spatial accuracy 

evaluation. The quantitative comparison for 

the DE and Altitude Errors (AE) metrics is 

given in Table 1. We remark that the errors 

listed in Table 1 are relatively large, when 

considering model theoretical trajectory and 

flight tracks. This claim is explained by the 

fact that the predictor was used to reproduce 

track data inputs to the flight model 

implementing the predictor engine itself. 

Additionally, the fact that a small number of 

points was used to reproduce real trajectory 

must also be taken under account. Predicted 

trajectory for the YYY2222 flight considered 

only five (5) input points to the flight model; 

while thirteen (13) input points were used to 

reproduce flight ZZZ3333. Inputing the high-

frequency component observed in flight TAS 

data, as seen in Fig. 9 for example, would not 

only be impractical but would be without 

purpose. The quality of points provided is of 

great importance: they should indicate when a 

varying in flight state is happening and this 

choice of points was not always considered in 

these trials. 

Notice, moreover, that RMS errors 

increase with flight duration considered in the 

analysis; the longer the flight, the greater 

RMS related errors will be accumulated, in 

general. Hence, RMS figures for each flight 

instance should not be contrasted to each 

other directly. Similarly, in the TP context, a 

temporal metric would indicate flight 

performance for distinct aircrafts flights 

reaching intermediate waypoints or a final 

destination as a function of their adopted 

trajectories. 

Table 1: Distance (DE) and Altitude (AE) RMS 

errors for the three flight instances. 

Flight 

Indicativo 
DE (%) AE (%) 

Flight  

duration 

XXX1111  0,599  1,00 01h17 

YYY2222  0,219  0,89 00h30 

ZZZ3333  1,000  1,00 00h41 

 

The error values disclosed in Table 1 

should be considered of qualitative nature 

only. This is due to the fact that many 

versions of flight modeling are currently being 

investigated for application to trajectory 

predictor. Moreover, each flight model can be 

fine-tuned for improved performance with 

respect to a specific metric employed for error 

computation. The amount of flight intent 

information supplied to the predictor model is 

also of great significance when interpreting 

these numbers, since they are relative to the 

quality of intent information used in the 

prediction. Hence, no importance should be 

given to the analysis of absolute error values 

at this moment and comparison should be 

based solely on the relative measure of 

computed errors. 

Figures 10 and 11 illustrate prediction 

results for flight ZZZ3333 in terms of flight 
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altitude and true airspeed. A simple visual 

analysis for these two figures will review very 

poor flight state reconstruction with the 

predicted trajectory. This is somewhat 

deliberate and aims to call attention to the fact 

that intent information in the form of 

waypoints provided to the predictor 

dynamical model was of limited quality and, 

perhaps, quantity; thus preventing the 

predictor from computing a satisfactory flight 

state profile. In essence, the dynamical flight 

model is unable to predict real flight tracks 

unless enough data concerning the how the 

aircraft is supposed to be operated. The flight 

dynamics incorporated into the aircraft 

performance model paramount though 

insufficient for useful prediction. 

 

Figure 10: Altitude comparison of flight ZZZ3333 

and predicted trajectories. 

 

Figure 11: True Airspeed (TAS) comparison of 

flight ZZZ3333 and predicted trajectories. 

 

Error results for Table 1 should also be 

considered in light of flight duration times. 

Observe that altitude error, captured by the 

HE metric, for flights XXX1111 and 

ZZZ3333 are the same. The scale for the 

altitude axis and flight duration must be taken 

into account when analyzing the AE 

numerical values obtained in the comparison 

table. Although XXX1111 is much better 

reproduced by the predictor, it is a longer 

duration flight. The same error value was 

achieved by flight ZZZ3333 much earlier in 

flight due to poor altitude profile 

reconstruction by the lacking of quality intent 

data. 

Flight YYY2222 is basically a straight 

line flight, Fig. 12, and prediction on the 

horizontal plane, measured by the DE metrics, 

yields a relatively satisfactory performance. 

Altitude error, measured with AE metrics, is 

comparable to the other flights because flight 

level intent was not provided accordingly, see 

Fig. 13. 

 

Figure 12: Comparison of the horizontal motion for 

flight YYY2222 trajectory (radar tracks) and 

predicted trajectory. 

 

Figure 13: Altitude comparison of flight YYY2222 

and predicted trajectories. 
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6. COMMENTS 

The influence of the selected numerical 

integration technique on the predicted 

trajectory accuracy and on prediction 

computational cost can be significant. 

Appropriate tuning of numerical integration 

tolerances is recommended to achieve desired 

accuracy at the expense of computation load 

on the system. This is paramount when 

designing ATM/ATC systems decision 

support tools to address controller workload 

under new airspace capacity demands. And 

according to Schuster & Porreta (2010), and 

others, this is one key limitation that must be 

overcome. 

It is easily observed that the quality of 

input data directly affects trajectory prediction 

accuracy, and this has been reported 

elsewhere (Mondoloni, 2003). The uncertainty 

related to the wind-field estimation greatly 

impacts along-track and time-of-arrival errors; 

this has been observed previously, 

(Mondoloni, Bayraktutar, 2005). In contrast, 

the wind influence on cross-track and altitude 

errors are less apparent. These can be 

explained by the fact that required altitude and 

heading are clearly defined in the flight plan, 

whereas the accumulation of small aircraft 

speed deviations because of wind will impact 

the overall ATE and TAE.  

Therefore, in order to mitigate 

differences between true, or observed, aircraft 

behavior from theoretical prediction one must 

provide a satisfactory uncertainty model. 

Whatever the approach to uncertainty 

modeling may be, the following comment 

serves as a guiding lemma for establishing the 

scope of trajectory prediction algorithms w.r.t. 

look-ahead times, (Thomas et. al. 2003): “... it 

is likely that with the increase in uncertainty 

at such long [look-ahead-time] LATs the rate 

of both false alarms and misses will be 

prohibitively high and will not produce a 

useful tool when it comes to planning for 

projected conflicts.” 

Prediction results are, amongst many 

others, used to feed the conflict detection 

service in tactical operation. Improvements in 

prediction for shorter look-ahead times 

require a higher-order aircraft model. In 

contrast, a lower-order model is sufficient for 

longer time horizons. 

Because of the versatility of use, the 

results also indicate that the kinetic prediction 

solution being researched in this study shows 

significant potential for real applications and 

are expected to achieve the same degree of 

safety-critical measures as those observed 

with currently employed prediction engines in 

the field. 

7. CLOSING REMARKS 

This note on trajectory prediction 

evaluation represents an initial effort on 

devising a thorough systematic and consistent 

method for achieving required prediction 

accuracy for future ATC requirements and 

demands. 

The trajectory prediction evaluation 

process with real flight data requires a great 

deal of data conditioning and pre-analysis 

prior to the comparison evaluation itself of 

distinct trajectories.  

Some measure of effort was experienced 

and dedicated to harvesting and formatting 

data appropriately for the evaluation analysis 

just described. This is being addressed in 

ongoing research intended towards improving 

the methods employed for a consistent and 

high-quality TP process. 

The kinetic approach to TP enables 

greater flexibility in terms of parametrization 

of a wide range of different flight conditions 

and intent scenarios; proving itself adequate to 

modern air traffic modernization operational 

demands. This increase in flexibility does, 

however, demand more knowledge about 

these same conditions and scenarios and how 

to best employ this knowledge to correctly 

parametrize the flight model. In many cases, 

the underlying predictor flight model is 

significantly sensitive to this parametrization. 

We do recognize, nevertheless, that through a 

collaborative environment for the flow of 

information, this demand for flight related 

knowledge will be supplied and that 

modernization of ATC/ATM systems will be 

ready to fulfill new operational expectations. 

Atech is committed to maintain the high level 

of system critical safety under these new 

operations. 
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10. LIST OF ACRONYMS 

ABEAR Associação Brasileira das 

Empresas Aéreas 

ADEP Departure Aerodrome 

ADES Destination Aerodrome 

ADS-B Automatic Dependent 

Surveillance – Broadcast 

ADS-C Automatic Dependent 

Surveillance – Contract 

AE Altitude Errors 

ANSP Air Navigation Service 

Provider 

ATE Along Track Errors 

ATC Air traffic Control 

ATM Air Traffic Management 

ATS Air Traffic Service 

CPDLC Controller-Pilot Data Link 

Communications 

CTE Cross Track Errors 

DBS Data Base System 

DDS Data Distribution Service 

DST Decision Support Tool 

EET Estimated Elapsed Time 

EOBT Estimated Off-Block Time 

FAA Federal Aviation 

Administration 

FDP Flight Data Processing 

FMS Flight Management System 

HE Horizontal Errors 

IATA International Air Transport 

Association 
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LAT Look Ahead Time 

ODE Ordinary Differential Equation 

REV Revisualization 

TAE Time of Arrival Errors 

TBO Trajectory Based Operations 

TFM Traffic Flow Management 

TOW Take-off weight 

TP Trajectory Predictor / 

Prediction 

UTC Coordinated Universal Time 

 


