
1

AUTOMATED LABEL PLACEMENT ALGORITHM BASED ON

EUROCONTROL’S HMI REQUIREMENTS FOR AIR TRAFFIC CONTROL

SYSTEM

Paula Bezerra Rocha Garcia

Atech Negócios em Tecnologias S/A

Rua do Rócio 313, 2º andar, São Paulo/SP, Brasil

Phone: +55 11 3103-4600, E-mail: pgarcia@atech.com.br, Fax: +55 11 3103-4601

Rafael Leme Costa

Atech Negócios em Tecnologias S/A

Rua do Rócio 313, 2º

andar, São Paulo/SP, Brasil

Phone: +55 11 3103-4600, E-mail: rlcosta@atech.com.br, Fax: +55 11 3103-4601

Eduardo Nunes Alvares Pereira

Atech Negócios em Tecnologias S/A

 Rua do Rócio 313, 2º andar, São Paulo/SP, Brasil

Phone: +55 11 3103-4600, E-mail: epereira@atech.com.br, Fax: +55 11 3103-4601

ABSTRACT

Several algorithms for radar label placement have been developed in order to prevent and to

minimize label overlapping automatically on air traffic control (ATC) displays. Automatic label

placement is a NP-complete problem, thus its solution depends on an appropriate heuristic. This

paper proposes a cluster-based approach in order to determine a local optimal solution by using the

obstruction polygon theory, marking weights related to symbols in an occupancy grid and judging

conflicts according to Eurocontrol’s priority rules. Firstly, the model was validated and then it was

implemented in an operational context as a functionality of Atech1’s ATC system.

Keywords: radar label anti-overlap, label conflict, label overlapping, label placement, ATC/HMI.

1
 Atech is a company from Embraer's group that develops ATC systems, defense systems and critical technologies

solutions.

2

1. INTRODUCTION

The label-positioning problem has been

studied since 1960s in cartography. This field

was first concerned with two-dimensional

static maps and evolved to three-dimensional

dynamic scenarios. Applications for air traffic

control, games, virtual reality and augmented

reality demand complete and real-time

solutions for the label overlap problem.

The air traffic control (ATC) is the

focus of this paper. In this context, the

controller has the main role as he/she is the

responsible for providing maximum safety for

airspace users. Besides this, he/she must

allow an ordered, fluid and economic air

traffic flow, also keeping a harmonious

coexistence between civil and military

aviation (Cardoso, 2010).

The essential element for the controller

to perform his tasks is the Plan View Display,

a system that consists of an airspace situation

display with dimensions of 2000x2000 pixels.

This display shows a two-dimensional

scenario, composed by a map in the

background and a variety of symbols. Among

these symbols, there are the aircrafts’ labels,

which includes the most important

information about the tracks.

The term “track” means a radar

detection of an aircraft. When the number of

tracks increases on the screen and the

functionalities of zoom-in/zoom-out are used,

these labels can overlap with other labels or

with other symbols. This is prejudicial to the

intelligibility of the controller on many levels

of operation.

Figure 1 shows the label overlapping

problem on an actual controller’s display. It is

a screenshot of the new DA/COM (air defense

system) user interface, developed by Atech.

According to Dorbes (2000), a number

of algorithms for radar label placement has

been developed in order to prevent and to

minimize label overlapping automatically.

According to Azuma and Furmanski (2003),

Peterson et al. (2009) and Reek (2010), the

label overlapping problem is NP-complete.

This means that an optimal solution might not

be found and an appropriate heuristic solution

needs to be tested.

EUROCONTROL – an international

organization composed of Member States

from the European Region that is involved in

almost every aspect of air traffic management

– defined a set of requirements for the radar

label placement on user interface. Besides the

automatic conflict resolution functionality, or

automatic deconfliction, requirements to

manually position labels need to be

considered (Dorbes, 2000). The transition

between auto mode and manual mode must

always be available for the controller.

Figure 1- New DA/COM user interface by Atech.

3

Among the automatic solutions

proposed in literature, there are algorithms

based on models that explore local optimal

solutions and models that seek the global

optimal solution. Such solutions can be

grouped in four main categories: models

based on force (Azuma and Furmanski,

2003), models based on clusters (Duverger,

2005; Azuma and Furmanski, 2003), models

based on navigation functions (Kakos and

Kyriakopoulos, 2005) and models based on

Probabilistic Roadmaps (Reek, 2010).

This paper presents the model adopted

by Atech for an automated label placement

algorithm, its validation and the results of its

implementation and integration on an actual

ATC control console.

Specifically, Section 2 is an overview of

the problem's context and requirements.

Section 3 reports on literature review,

presenting four models. Section 4 explains the

paper's methodology and proposed solution.

Section 5 presents the model's implementation

and validation, while Section 6 shows the

results of the practical implementation.

Section 7 provides a conclusion and outlines

future work.

2. OVERVIEW

A representation of the symbols used in

the airspace visualization displays, with their

respective names, is shown in Figure 2.

Figure 2 - Symbols on the airspace visualization

display (adapted from Dorbes, 2000).

The track, represented by the largest

circle, is the icon that shows the aircraft’s

current position. The history track is a record

of previous radar locations of the aircraft. The

speed vector represents the aircraft heading

and the length of this vector is proportional to

its instantaneous velocity. The label contains

additional information about the aircraft. It

has at least the aircraft’s callsign (ID

number), current flight altitude and speed, and

a few other flight related information. When a

track is selected, the label should appear with

a different color. Finally, the leader line

connects the label to the track and these three

symbols move together on the display.

The display can also contain some

symbols representing other important objects,

such as airways, beacons, etc.

The priority of anti-overlap

requirements established by

EUROCONTROL for label placement

algorithms is described below (Dorbes, 2000):

1. Callsign should never overlap;

2. The label of an aircraft should not

overlap with the position symbol/track

history of another aircraft;

3. Labels should not overlap;

4. The leader line of a label should not

cross the leader line of another

aircraft’s label;

5. The leader line of a label should not

cross the label of another aircraft;

6. The label of an aircraft should not

overlap with the speed vector of

another aircraft;

7. The leader line of a label should not

interfere with the position

symbol/track history of that aircraft;

8. The leader line of a label should not

interfere with the position

symbol/track history of another

aircraft;

9. The leader line of a label should not

interfere with the speed vector of that

aircraft;

10. The leader line of a label should not

interfere with the speed vector of

another aircraft;

11. If inclusion of other features is

needed: the label of an aircraft should

not overlap with beacon symbols,

airway symbols, DFL, etc.

Besides these requirements,

EUROCONTROL recommends optimum and

maximum values for label movement distance

assignments, leader line length (minimum,

maximum and default) and label rest position

(90°, 135° – default, 225°, 270° from the

reference).

4

3. LITERATURE REVIEW

The four most important models

available in literature to the automatic label

deconfliction are presented in this section and

their advantages and disadvantages are

evaluated.

3.1. Force-based model

The general idea is to model objects as

electrically charged particles that attract and

repel each other. Labels repel other labels and

tracks attract labels (ensuring labels will not

stray too far from their respective tracks).

According to Azuma and Furmanski

(2003), this model has been used in graph

visualization, pushing the graph’s nodes away

from each other to maximize legibility.

3.2. Cluster-based model

A cluster is a group of tracks that has

overlapping symbols. The main models

discussed in literature that consider the use of

clusters in their algorithms are the models

described by Duverger (2005) and Azuma and

Furmanski (2003). These algorithms focus on

the identification of overlapping label clusters

and on the resolution of these conflicts

locally.

The algorithm developed by Duverger

(2005) is called Mathematical Weighted

Formula (MWF). Reek (2010) explains and

adopts this model in his thesis, so the general

idea is: the area around the track is discretized

in a grid of possible cells to place the labels

and each of these cells receives a cost. The

label positions are determined every time the

track moves on display and the cell with the

lowest cost is chosen to locate the label.

Figure 3 illustrates the algorithm. The

label to be positioned is the one associated

with the central track in the grid. The cells

with higher probability of overlap receive

higher cost (darker cells) and the cell that

should be chosen is the one with the lowest

cost among all (lighter cell).

The following properties compose the

cost function: overlapping symbols, angle of

the leader line, distance between label and

track, and penalty for “jitter” caused by label

movements. The final formula is an empirical

weighted combination of those four costs.

Figure 3 - MWF algorithm: grid around an aircraft

with cells of different costs (Reek, 2010).

On the other hand, Azuma and

Furmanski’s algorithm (2003) identifies

clusters and searches for solutions by

repositioning all labels in the group

simultaneously. The authors say that it avoids

local minima, problem that affects other

methods that move just a label at a time.

The model is simple: firstly, the

algorithm searches for labels in conflict and

groups them in clusters; secondly, each

cluster is visited and all its labels are moved

randomly; finally, the new configuration is

compared to the previous positions using a

cost function and, after a certain number of

iterations, the best configuration is chosen.

Peterson et al. (2009) also implement

the cluster-based method and emphasize that

each cluster is analyzed according to

descending size order and the new random

positions are limited to a fixed number.

Furthermore, the positions of the previous

configuration are also included in the

evaluation in order to avoid an inferior choice.

Regarding the cost function, Azuma and

Furmanski (2003) and Peterson et al. (2009)

define descending costs for label-label

overlap, label-leader line overlap and

intersection between two leader lines. The

authors use 36 possible radial positions to

place the label around a track. Figure 4 shows

the results of the algorithm.

5

Figure 4 - Cluster-based algorithm by Azuma and

Furmanski (2003): (a) initial positions of the labels

randomly chosen; (b) new positions for the labels

after applying the algorithm.

3.3. Model based on navigation functions

Navigation or motion planning

problems in robotics consist of dividing a task

into discrete movements that satisfy some

constraints and optimize some aspect of the

total movement. A common problem is to

produce a continuous movement of a robot

(movable object) to connect an initial

configuration to a goal configuration,

avoiding collision between the robot and the

obstacles.

The label deconfliction can be

interpreted as a problem of this kind. The

robot is a label, it is considered punctual and

it moves in a two-dimensional scenario. The

configuration space is a plan and possible

configurations are represented by parameters

(x,y). A configuration describes, therefore, a

robot’s behavior. To avoid label overlap, it is

necessary to avoid the robot’s collision with

tracks, leader lines, speed vectors and other

labels.

There are several approaches to solve

two-dimensional navigation problems (as

grid-based algorithms, geometric algorithms

and potential functions). Kakos and

Kyriakopoulos (2005) argue in favor of a

methodology that considers navigation

functions, because they have the characteristic

of having only one global minimum (which is

defined to be the goal configuration). Rimon

and Koditschek (1992) define the navigation

functions as a class of artificial potential

functions and provide mathematical details

about them in their work.

Still on Kakos and Kyriakopoulos’

(2005) model, to transform the label into a

punctual robot it is necessary to subtract the

volume of the label and add it to the volume

of the obstacles. Each obstacle is decomposed

into three rectangles. They are around the

label, around the leader line and around the

track symbol, as shown in Figure 5a.

For each rectangle, the Minkowski sum

(refer to the appendix) is applied to the center

of the robot, the central point within the label,

in order to create a punctual movable robot, as

in Figures 5b and 5c. The resulting form is

then approximated by an ellipsoid to pose the

problem as mathematically tractable and

describable by a simple function.

Figure 5 - (a) Decomposition of obstacles in three rectangles; (b) scenario with obstacles, a movable label and its

configuration space; (c) Minkowski sum to create a punctual movable robot (Kakos and Kyriakopoulos, 2005)

6

Additionally, the model applies a

coordinate transformation to make the

scenario of interest spherical and represents it

with a navigation function. Then the robot

uses a gradient descent algorithm to find an

optimal path to its destination.

3.4. Model based on Probabilistic

Roadmap (PRM)

This model was presented by Reek

(2010) and tries to obtain a global solution.

Each label is treated as an independent robot

that tries to find the best path to its goal in a

space with obstacles (tracks, leader lines, etc.)

and with other robots (labels).

Reek (2010) explains the general idea of

PRM: create a graph with subgroups of all

possible existing positions. The nodes of the

graph represent the positions and the edges

indicate a possible transition with its cost.

Existing standard short-path algorithms can

be applied easily and the chosen path is,

therefore, the one with the lowest cost.

The roadmap construction is made by

samples of random positions through which

the robot can pass and the forbidden positions

(for example, inside the obstacles) are

discarded. The connections between the

graph’s nodes are made according to the real

possibility of robot’s movement and, usually,

each node has a threshold of possible

connections. Then, the edges costs are based

in pre-established requirements, as the

maximum distance between the positions, for

example.

If a solution is obtained before the

available time to complete the search, the

graph can be extended with a prediction of

future positions for the tracks and then the

short path solution is obtained.

3.5. Evaluation of models

The force-based model is one of the

oldest solutions to the label overlapping

problem. Azuma and Furmanski (2003), who

implemented the algorithm, mention that it

does not work well to avoid overlaps and

often causes distraction to the controller

(oscillations are generated on the screen when

groups of labels keep attracting or repelling

each other repeatedly).

Regarding the cluster-based MWF

model (Duverger, 2005), Reek (2010) says

the overlaps are largely reduced and the labels

movements occur in the same order as if done

by human interaction. On the other hand, he

calls attention to the problem of a cascade of

movements and to an increase in overlaps

duration. The first problem is because the

implementation searches for a local optimum

rather than a global optimum. Therefore,

when a track moves, the algorithm searches

for a better position to the respective label; it

does not take into account the possibility to

move other labels around, which could lead to

a much better solution. The second problem is

caused by the introduction of jitter cost,

because there is always a relation between the

overlap duration and the number of label

movements; the solution is related to this cost

fit, but probably only an in-depth study could

fine tune the ideal parameters.

Peterson et al. (2009) evaluated the next

cluster-based model from Azuma and

Furmanski (2003). He stated that the

algorithm shows good results in avoiding

label overlap in real-time applications. On the

other hand, the method has a long startup

time: Azuma and Furmanski’s (2003) results

show that the initial label placement

performance is poor, but the configurations

improve after five or more iterations.

Moreover, Peterson et al. (2009) guarantee a

solution in every time interval, because the

algorithm works with a fixed set of random

positions to evaluate in each cluster.

Obviously, this also means that the algorithm

can fail in finding a satisfactory solution; a

general label placement is always refined,

however.

Concerning the navigation functions

approach, it was difficult to find references

that discuss or compare the performance of

that method with others. However, at Kakos’

website
2
 a system that allows a collision-free

movement using a navigation function

methodology is presented. There, one is able

to watch an online video with some minutes

2
 Kakos Bros Solution website

<http://www.kakos.com.gr/page_1145700674781.html>.

7

of simulation in a scenario with ten

simultaneous tracks and the algorithm

presents satisfactory performance.

Reek (2010) also evaluates the model

based on PRM and he lists as an advantage

the human-like behavior of the algorithm. On

the other hand, the problems he finds appear

in a large number. The main PRM solution

drawback is the difficulty in finding an

optimal solution, because the algorithm is

slow and the search space is too large.

Additionally, the solution is global and all the

labels are always taken into account. It

implies an intense label movement on the

screen, including labels which were not in

conflict.

Thus, Reek (2010) concludes that the

MWF algorithm is much better than the PRM

to solve the label deconfliction. He reasons

that: (i) MWF takes less memory and CPU

power to complete the calculations; (ii) while

PRM tries to solve a NP-hard problem

approximately, MWF is a much simpler

problem with a greater success rate to

determine a good solution.

All these arguments contribute to the

adoption of a local solution for the automatic

label placement problem. It will guarantee a

satisfactory result in each iteration and avoid

problems with processing capacity.

4. PROPOSED APPROACH

Our methodology follows three steps:

(i) model’s construction; (ii) model’s

validation; and (iii) algorithm’s

implementation and integration.

The solution to label deconfliction

adopted in this paper was based on the two

cluster-based models and the approach

employing navigation functions; all available

in literature and discussed above. The first

two models depend on empirical tests to

determine the best costs of each cell and the

third model provides the idea of classifying

the scenario in free regions and in forbidden

regions. The obstruction polygon, based in the

Minkowski sum, represents one possible tool

to implement that classification.

Therefore, to solve or minimize the

label overlapping problem, this paper

proposes a cluster-based model that uses the

theory of obstruction polygon to define

forbidden positions to place labels and

evaluates costs per cells of a grid to choose

the best new configuration. Concepts such as

occupancy grid, analysis per quadrants,

obstruction polygon and relaxation constitute

the model.

The validation phase is a proof of

concept developed using MATLAB software.

MATLAB is a powerful environment to work

with, making matrix computation and

numerical calculations easy and allowing fast

code debugging.

Finally, after verifying the model, the

automated label placement algorithm is

implemented in Java and integrated as a

functionality within SAGITARIO, which is

Atech’s system for Air Traffic Control. From

MATLAB’s proof of concept implementation,

the integration in other environments becomes

an easier task, because much of the Matlab

code can be reused in Java from an already

implemented and tested backbone solution.

4.1. Occupancy grid

A grid with same dimensions of the

visualization area is used to represent the

scenario. This representation allows the

construction of alternative settings in a short

time (Elfes, 1989). The grid is composed of

cells. Each cell of the grid represents a screen

point, with (x,y)-coordinates, and is assigned

a power-of-two weight value according to the

symbol type which is used to mark it on the

grid, as shown in Table 1.

Table 1 – Symbol’s weights for the occupancy grid

Weight Symbol type

0 Free cell

1 Track

2 Label

4 Leader line

8 Speed vector

16
Obstruction polygon

(forbidden region)

32 Callsign

Labels and tracks, for example, were

defined to have the same shape and the same

size of their types; labels are always

8

rectangles and tracks are always squares. The

points that compose the whole area of the

symbols are marked on the occupancy grid.

4.2. Analysis by quadrants

When a label is repositioned, it must

remain at this configuration for a period

adjusted by the controller in the system.

Moreover, when the controller moves a label

manually, the deconfliction algorithm also

needs to keep the new label position for that

same period of time. This feature helps to

avoid oscillations on the screen and

distractions.

A track is, therefore, classified as

movable when it has not been moved since a

predefined time by the automatic deconflicter

or by the controller, otherwise it is classified

as fixed.

The visualization area is divided into

four quadrants to set the order in which the

movable tracks will be relocated. These

quadrants are arranged in descending order

with respect to the numbers of movable tracks

inside each one of them. When two quadrants

contain the same number of track labels,

quadrants are arranged according to the usual

numbering of the Cartesian plane’s quadrants.

4.3. Obstruction polygon

The obstruction polygon (refer to the

appendix) was used to define the positions in

which a label cannot be placed in order to

avoid overlapping with other symbols. So all

those positions are called “forbidden region”

and they are marked in the occupancy grid.

As labels are always rectangles and

tracks are always squares on this model, the

obstruction polygons for those objects also do

not change. It is sufficient to calculate those

polygons only once, to store the obtained

results and to copy and shift them to their

desired positions. In the case of convex

polygons, the obstruction polygon is simply

the intercalated reordering of the edges of the

two polygons under consideration. The

reference point used for the calculation is the

upper-left point of the symbols. Figures 6a

and 6b show an example of how the

obstruction polygon is constructed for the

label-label conflict and for the label-track

conflict, respectively.

Regarding leader lines and speed

vectors, it is not possible to precalculate the

obstruction polygons and just reuse them,

because straight lines can assume any slope.

In that case, the calculations are done on

demand. The straight lines are transformed

into rectangles and the above-mentioned rule

for intercalated edges in convex polygons

remains.

4.4. Relaxation

Depending on the situation, there is no

solution for repositioning all labels and some

overlapping must be allowed. In other words,

this algorithm needs to consider certain

relaxation for the solution.

Figure 6 - Construction of obstruction polygon for: (a) label-label case; (b) label-track case.

9

When a new position for a label in

conflict is calculated, as well as the new

position of its respective leader line, the

logical operation XOR (exclusive OR) is

calculated between all the symbols and the

occupancy grid. Then the result of that

operation is converted to a penalty.

The possible overlaps are always related

to a label, to a callsign or to a leader line with

another symbol. Table 2 shows all types of

possible overlaps, and the related power-of-

two weights (described in Table 1) for the

XOR operation. However, the XOR operation

result is adapted in two cases: (i) when an

element is in contact with a free position and

(ii) when an element is in contact with an

identical element. In the first case, the XOR

operation result would be the value of the

symbol itself, but the adapted result is defined

as zero (because there is no problem in

positioning a symbol in a free region). In the

second case, the adapted XOR result is the

value of the symbol itself (because a zero

would indicate a free position erroneously).

The penalties for each overlap depend

on a list of requirement proposed by Dorbes

(2000). This values definition is empirical

and, in principle, the values suggested by

Reek (2010) will be used.

The details about the XOR operation,

the adapted results and the penalties for all

possible combination of symbols are shown in

Table 2.

From the penalties described previously

in the above table, a score is applied for each

placement. This number is composed by the

sum of the corresponding penalties for each

type of overlap. For example, a new

placement overlaps the leader line with the

speed vector and the label with another label.

The penalty in this case will be:

a. Leader line with speed vector: 4 ⊕ 8

= 12 penalty = 5;

b. Label with label: 2 ⊕ 2 = 0 2

penalty = 30;

c. Total score = 5 + 30 = 35.

Table 2 - Penalties for all possible combination of symbols

Type of overlap XOR Adapted result Penalty

Callsign + X 32 ⊕ X 32 – 40 or 48 150

Label + Track 2 ⊕ 1 3 40

Label + Label 2 ⊕ 2 2 30

Leader line + Leader line 4 ⊕ 4 4 25

Leader line + Label 4 ⊕ 2 6 20

Label + Speed vector 2 ⊕ 8 10 15

Leader line + track 4 ⊕ 1 5 10

Leader line + Speed vector 4 ⊕ 8 12 5

Label + free cell or Leader line + free cell 0 ⊕ X 0 0

5. MODEL’S IMPLEMENTATION AND

VALIDATION

The automated label placement

algorithm must receive a certain amount of

tracks inside a rectangular visualization area,

identify conflicting movable tracks and

reposition them to solve (or to reduce) the

overlapping problem in the given scenario.

The algorithm’s basic steps are: (i)

divide the visualization area in an occupancy

grid; (ii) group the movable labels in clusters

per quadrant; (iii) map the forbidden regions

to place a label using the position information

of the fixed symbols (in other words, the

obstacles); (iv) mark the forbidden region’s

and fixed symbols’ weights in the cells of the

occupancy grid; (v) for each movable label,

vary leader line length and angle to place the

label: if the new position does not cause

overlapping, choose that configuration;

otherwise, sum the penalties for all the

possible configurations and choose the one

with the lowest score; (v) go back to step (iii)

and pick another movable label to reposition.

10

The proof of concept to validate the

model was developed using MATLAB

software (version R2014a), from MathWorks.

MATLAB is a software dedicated for

numerical computation and it provides a

powerful environment for engineering and

sciences in general.

Some assumptions were made to guide

the solution’s implementation. The origin of

the Cartesian coordinate frame on the screen

is located at the upper-left corner. So the y-

axis is directed from top to bottom and x-axis

coordinates increase from left to right.

Besides, the coordinates are counted with

natural numbers because the screen works

with pixels.

The track is a circle and its reference

point is its center, but on this implementation,

it is defined as a square with side measuring

twice the radius of the circle. The label is a

rectangle and its reference point is the upper-

left corner. It is also necessary to have its

height and width.

The leader line and the speed vector are

straight lines with an arbitrary slope. Both

start from the center of the track (initial

point). In case of the leader line, it ends at a

vertex or at a midpoint of a label edge. In case

of the speed vector, it can end at any point

depending on the aircraft’s speed.

It is also necessary to define a reference

orientation to reposition labels (Dorbes,

2000), which can be relative to the speed

vector (variable reference) or to the top of the

screen/to the North (fixed reference), with

positive values in the clockwise direction.

Lastly, the user sets a default angle in relation

to the defined reference (usually 135º).

The following simulation considers a

scenario with 60x60 pixel dimension, 11 fixed

tracks (in blue) and 7 movable tracks (in

green). The minimum, default and maximum

leader line lengths are 3, 10 and 20,

respectively, with unitary increments. The

label’s extended height is twice label’s default

height. Finally, the default label rest position

is 135º.

Figure 7, generated with MATLAB,

shows the tracks distribution on the

visualization area. The blue tracks are fixed

and the green tracks are movable.

Figure 7 - Scenario for simulation with 11 fixed

tracks (blue) and 7 movable tracks (green),

generated with MATLAB software.

The repositioning results are shown in

Figure 8a for reference relative to the top of

the screen and in Figure 8b for reference

relative to the speed vector. The repositioned

labels belong to the red tracks. One can

observe the different positions chosen by the

algorithm when the reference changes. The

upper-left red track shows this difference

clearly: in the first case, it was rotated to the

Figure 8 - Results obtained with MATLAB for simulation of scenario with 11 fixed tracks and 7 movable tracks:

(a) top of the screen reference, (b) speed vector reference. Blue tracks are fixed and red tracks are new.

11

default position (angle of 135º and default

leader line’s length); in the last case, it

remained at the same position because it was

not in conflict and the default position would

provoke overlap.

6. RESULTS

After validating the model, the

automated label placement algorithm was

implemented as a plugin of SAGITARIO. The

algorithm was coded in Java and the label’s

default rest position was set as 135º related to

the top of screen.

To illustrate what happens in the

algorithm’s background, Figure 9 shows an

example of weight markings on the

occupancy grid. Because the movable label in

Figure 9a does not overlap with another

symbol, the algorithm moved it to the default

position and the resulting markings are

illustrated in Figure 9b. Green colored cells,

for example, represent the forbidden region

with a weight of 16 for each cell and cells

colored with yellow is the label weighted as 2

(see Table 1).

Figure 9 – Occupancy grid: (a) A track with a

movable label; (b) Weights on the occupancy grid

after repositioning the label (e.g. green is the

forbidden region and red is the callsign).

An important requirement is the priority

of manual movements over automatic

deconflicter solution. Figure 10a shows a blue

label that was selected by the controller.

He/she dragged the label to a desired position,

causing overlap with another label, as shown

in Figure 10b. Consequently, the automatic

deconflicter kept the controller’s decision for

the blue label and moved the other to solve

overlap, as in Figure 10c.

Figure 10 – Label manual placement: (a) The

controller selects the label in blue; (b) He/she moves

the label to a position that overlaps with the white

label; (c) The white label escapes from the blue one

automatically and the controller’s choice remains

unchanged for a configured period of time.

Figure 11a illustrates three labels in

conflict, which includes callsign overlap. The

algorithm is capable of solving that worst type

of overlap successfully: the labels were

repositioned respecting their callsign

numbers, as shown in Figure 11b.

Expanding the scenario, Figure 12a

shows a screenshot with 13 labels and all

types of possible overlaps: label with label,

leader line, speed vector and track, leader line

12

with speed vector, and callsign. The solution

is presented in Figure 12b and shows the

algorithm’s ability to solve all conflicts.

 Finally, a scenario with no symbol

overlaps is considered in Figure 13a. In that

case, the algorithm should place the labels in

the default position (135º related to the top of

screen), since the new configuration does not

cause overlap. Figure 13b shows the result.

Figure 11 - Callsign overlap: (a) Scenario with three labels in conflict; (b) The automatic deconflicter repositions

the labels in a way to avoid callsign overlap (see codes A2202 and A0100).

Figure 12 – (a) Scenario with 13 movable labels; (b) Automatic deconflicter’s solution.

Figure 13 – (a) Scenario with 3 movable labels which are not in conflict; (b) The automatic deconfliction

algorithm moves the labels to the default leader line length and label rest position (135º top of screen).

13

Figure 14 shows the algorithm's runtime

as a function of the number of labels. The

runtime is not linear and it depends on the

number of labels and on the labels'

arrangement on the visualization area. The

first iteration tends to be longer than the

following ones, because the occupancy grid

needs to be initialized when the algorithm

starts.

The controller usually works with a

maximum of 20 tracks under his/her

responsibility in a specified airspace’s sector.

Even when he/she positions the sector of

interest in the center of the display, there are

other neighboring tracks that also appear on

the screen. In an Approach Control Unit

(APP) context, there can be about 80 tracks

on the screen at the same time and, in an Air

Traffic Control Center (ACC), there can be

about 160.

From those numbers and from the

results presented in Figure 14, it is clear that

the proposed algorithm is well suited for

practical applications. Even if there were the

possibility of a controller to work with a

higher number of tracks simultaneously, the

implementation would treat all labels and

conflicts; however, operationally speaking,

this situation is unreal. In Figure 15, it is

represented a scenario with about 250 labels

and a visualization area four times smaller

than the professional 2000x2000 pixels

display. Thus, the screenshot is equivalent, in

terms of labels density, to a thousand labels in

a professional display. One can observe that

there is not enough useful area on the screen

to reposition all the labels in a way to avoid

overlaps.

Figure 14 – Algorithm’s runtime as a function of the number of labels on the screen.

14

Figure 15 - Scenario with about 250 labels in a visualization area four times smaller in area than the professional

2000x2000 pixels display.

7. CONCLUSION

Since the label deconfliction problem is

dynamic, the solution must be in real time and

the controller’s manual label setting should be

maintained as much as possible, a local

solution is more appropriate than the global

one. This choice avoids problems like

processing capacity and repeated oscillations

on the screen that can distract the controller.

The algorithm successfully resolved the

label-overlapping problem. It was able to

identify and to judge all the eight kinds of

overlapping between symbols. Because the

proposed solution involves a heuristic, the

runtime’s prediction is not immediate. In the

worst case, the algorithm will test all

positions (varying the angle and the size of

the leader line) and calculate all penalties,

choosing the lowest value afterwards. In this

situation, the runtime increases with the

number of movable tracks. In addition, the

total number of tracks on the screen also

influences time performance because the

occupancy grid needs to be initialized with

the symbols and the forbidden regions.

Future directions for continuation of

this work could consider the improvement of

the algorithm in two aspects: penalty rules

and parallel processing.

Regarding penalties, it would be

interesting to test other penalty combinations

for the symbols to evaluate the algorithm

behavior. An idea is to use an exponential

scale to analyze the label repositioning

effects.

Finally, since the initial setup divides

the scenario into four quadrants, a parallel

processing of these four regions could help to

minimize the algorithm’s runtime, although

the current response is already appropriate for

real applications.

8. REFERENCES

AZUMA, R.; FURMANSKI, C. “Evaluating label placement

for augmented reality view management”. In: Proceedings of

the 2nd IEEE/ACM International Symposium on Mixed and

Augmented Reality, 2003, 10 p.

CARDOSO, R. B. Dia internacional do controlador de

tráfego aéreo. Available at: <http://www.decea.gov.br/

?p=3905>. Published on 20 Oct. 2010. Accessed on 24 Sep.

2014.

DORBES, A. “Requirements for the implementation of

automatic and manual label anti-overlap functions”.

EUROCONTROL Experimental Center, EEC Note n. 21/00,

2000.

DUVERGER, A. “Development of a mathematical weighted

formula to eliminate the overlapping of aircraft labels on the

ATC radar display”. EUROCONTROL Experimental Center,

EEC Note n. 19/05, 2005.

15

ELFES, A. “Using occupancy grids for mobile robot

perception and navigation”. IEEE Computer, v.22, n.6, p.46-

57, 1989.

KAKOS, S.; KYRIAKOPOULOS, K. J. “The navigation

functions approach for the label anti-overlapping problem”.

EUROCONTROL Experimental Centre innovative research

activity report 2005. p. 307-319.

PETERSON, S. D. AXHOLT, M. COOPER, M.; ELLIS,

S.R. “Visual clutter management in augmented reality:

Effects of three label separation methods on spatial

judgments”. In: IEEE SYMPOSIUM ON 3D USER

INTERFACES. Lafayette, Louisiana, USA, 2009, p. 111-

118.

REEK, S. “Real-Time Label Overlap Avoidance for Air

Traffic Controllers using Probabilistic Roadmaps”.

Dissertation (Master’s Degree) - Utretch, 76 p., 2010.

RIMON, E.; KODITSCHEK, D. E. “Exact robot navigation

using artificial potential functions”. IEEE Transactions on

Robotics and Automation, v.8, n.5, p.501-518, 1992.

SATO, A.K. “Proposta de algoritmo para a determinação da

região livre de colisão e sua aplicação na solução de leiautes

bidimensionais irregulares com recozimento simulado”. São

Paulo, 89 p., 2011. Dissertation (Master’s Degree) – Escola

Politécnica da Universidade de São Paulo.

APPENDIX: OBSTRUCTION POLYGON

USING MINKOWSKI SUM

The obstruction polygon corresponds to

translations applied to elements, which are

matematically represented by a set of vectors.

A reference point must be defined and it can

be internal or external to the element, as

shown in Figure 16 (Sato, 2011).

Figure 16 – Translations applied to an item with a

reference point (Sato, 2011).

According to this operation, consider

two elements positioned in space, a fixed Pi

and a movable Pj. There are translations that

overlap the movable one to the fixed one. The

obstruction polygon is the region that

represents the set of forbidden translations for

movable element, ie., positions where this

element intersects with the fixed one (Sato,

2011).

Figure 17 shows an example of an

obstruction polygon.

Figure 17 – Obstruction polygon: boundary defined

by oriented edges (SATO, 2011).

The Minkowski sum between two

polygons is an algorithm for creating the

obstruction polygon and it is defined as the

set of points:

},|{ ji PwOPvOwvO

. (1)

