

AIRCRAFT SIZE AND TYPE IMPACTS ON REGIONAL AIR TRANSPORT DEMAND

Carlos Higino Marques Junior Alessandro V. Marques Oliveira

AIRLINE'S DILEMMA

JETS AND TURBOPROPS OPTIONS

Note: Single class with pitch ranging from 30" to 32".

Source: Manufacturers' website.

AIRCRAFT SELECTION

- Performance
- Acquisition costs
- Operational costs
- Maintenance costs
- Seat capacity
- Limitations

SUITABLE AIRCRAFT

AIRCRAFT ENGINE TYPE

"Passengers have a clear preference for jets over turboprops, viewing the former as quieter, faster, safer and more comfortable"

Source: ARNOULT (2001) apud DRESNER, WINDLE and ZHOU (2002) Photo by Gruber Maximilian

AIRCRAFT ENGINE TYPE & DEMAND

- Having lower fuel consumption, turboprops would increase demand through less expensive ticket prices.
- Flying faster, jets would increase demand through higher service frequency.
- Flying more, jets would diminish demand with greater ticket prices due to higher maintenance costs associated to higher flight cycles.

Source: RYERSON and HANSEN (2010); BRUECKNER and PAI (2009)

AIRCRAFT SIZE

Most of recent articles reports how airlines meet demand selecting the right aircraft and not how the aircraft size affects demand.

AIRCRAFT SIZE & DEMAND

4444444444444

- In order to supply demand, airlines have three options: use larger aircrafts, augment frequency or improve load factor.
- Since it is easier to fill small aircrafts, their operation is more profitable, allowing more frequency and thus, increasing demand.
- Operational costs (fuel, crew, airport tax) increase across aircraft size, but once they have more seats, ticket prices tend to be less expensive which increase demand.

Source: GIVONI and RIETVELD (2009); WONG, PITFIELD and HUMPHREYS (2005); WEI and HANSEN (2005); SWAN and ADLER (2006)

HYPOTHESIS

- + H1: Both jets and turboprops positively affect demand.
- + H2: Jets enhance demand more than turboprops.
- + H3: Small aircrafts enhance demand more than large ones.

ECONOMETRIC MODEL

REGIONAL FLIGHTS

REGIONAL FLIGHTS

RESULTS

	OLS	2SLS	GMM2S	LIML
ln yield	-0.1654***	-0.1976***	-0.2002***	-0.1977***
	[0.027]	[0.033]	[0.032]	[0.033]
ln n of carriers	0.2700***	0.3134***	0.3215***	0.3136***
	[0.020]	[0.027]	[0.026]	[0.027]
ln av aircraft size	0.3156***	0.3905***	0.3804***	0.3906***
	[0.033]	[0.037]	[0.037]	[0.037]
<pre>ln population (geo~)</pre>	2.4715***	2.7056***	2.6717***	2.7058***
	[0.339]	[0.340]	[0.339]	[0.340]
ln gdp per cap (ge~)	0.9264***	0.8314***	0.8202***	0.8313***
	[0.091]	[0.096]	[0.094]	[0.096]
ln maxshcond	0.0998***	0.1068***	0.1101***	0.1068***
	[0.017]	[0.017]	[0.017]	[0.017]
pres young LCC	0.2436***	0.2351***	0.2281***	0.2350***
	[0.021]	[0.020]	[0.020]	[0.020]
pres major	0.0925***	0.0586***	0.0570***	0.0586***
	[0.019]	[0.020]	[0.020]	[0.020]
pres regional TP	0.1085***	0.1031***	0.1032***	0.1030***
	[0.026]	[0.026]	[0.026]	[0.026]
pres regional jet	0.0787***	0.0574***	0.0544**	0.0574***
	[0.022]	[0.022]	[0.022]	[0.022]
pres mainline jet	-0.0003	-0.0347	-0.0317	-0.0347
	[0.027]	[0.027]	[0.027]	[0.027]
Adj R2	0.8643	0.8661	0.8660	0.8661
RMSE	0.3203	0.3137	0.3139	0.3137
F	150.497	148.637	150.177	148.635
KP		391.3958	391.3958	391.3958
KP PValue		0.0000	0.0000	0.0000
_ J		5.2600	5.2600	5.2603
J PValue		0.5109	0.5109	0.5109
- Weak CD		1.8e+03	1.8e+03	1.8e+03
 Weak KP		459.3777	459.3777	459.3777
N_Obs	14706	13970	13970	13970

Notes:

- Estimated coefficients (standard errors in brackets)
- P-value representation: ***p<0.01, ** p<0.05, * p<0.10

CONCLUSION

- Both aircraft type and size are relevant for generating demand.
- Results suggest a demand generation criteria could be used when selecting an aircraft.
- Flying small aircrafts contributes more to demand than flying bigger aircrafts.
- Unlike expectations, data suggests TPs improve demand more than jets.

REFERENCES

- ANAC Agência Nacional de Aviação Civil. "Demanda e oferta do transporte aéreo Empresas brasileiras." 2014.
- BETTINI, H. F. A. J. "Um retrato da aviação regional no Brasil." 1, no. 1 (2007): 46-65.
- BRUECKNER, J. K., and V. PAI. "Technological innovation in the airline industry: the impact of regional jets." International Journal of Industrial Organization, no. 27 (2009): 110-120.
- DRESNER, M., R. WINDLE, and M. ZHOU. "Regional jet services: supply and demand." Journal of Air Transport Management, no. 8 (2002): 267-273.
- GIVONI, M., and P. RIETVELD. "Airline's choice of aircraft size explanations and implications." Transportation Research Part A, no. 43 (2009): 500-510.
- KEMP, R. "Short-haul aviation under what conditions is it more environmentally benign than the alternatives?" Technology Analysis & Strategic Management 21, no. 1 (2009): 115-127.
- RYERSON, M. S., and M. HANSEN. "The potential of turboprops for reducing aviation fuel consumption." Transportation Research Part D, no. 15 (2010): 305-314.
- SWAN, W. M., and N. ADLER. "Aircraft trip cost parameters: a function of stage length and seat capacity." Transportation Research Part E, no. 42 (2006): 105-115.
- WEI, W., and M. HANSEN. "Cost economics of aircraft size." Journal of Transport Economics and Policy, no. 37 (2003): 279-296.
- WEI, W., and M. HANSEN. "Impact of aircraft size and seat avilability on airline's demand and market share in duopoly markets." Transportation Research Part E, no. 41 (2005): 315-327.
- WONG, D. K. Y., D. E. PITFIELD, and I. M. HUMPHREYS. "The impact of regional jets on air service at selected US airports and markets." Journal of Transport Geography, no. 13 (2005): 151-163.