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ABSTRACT 

This note is part of continuing research that aims at introducing model-driven development 

techniques to system development cycle. Some modeling tools and analysis technics are reviewed 

and applied to achieve improved productivity for the ATC system development process. These tools 

represent a large set of resources, ranging from modeling and formal specification languages to 

software for model-driven development. Case studies are presented for modeling and analyses of 

various functionalities of a simplified version for a flight plan manager, currently in operation at 

various air-traffic centers throughout Brazil. Also considered, an application for receiving and 

processing flight tracks from ADS-B data.  
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1. INTRODUCTION 

Software Engineering can be 

understood as “the development of reliable 

and high quality software systems on 

schedule” and within budget constraints, 

(Ferré, Vegas, 1999), see also (Basili, 

Caldiera, 1992). Great effort has been 

dedicated to better characterize what methods 

should be used to achieve these high-level 

goals which ultimately define Software 

Engineering. One possible approach to 

software engineering is based on the Model-

Based Systems Engineering (MBSE) concept. 

According to INCOSE (International Council 

on Systems Engineering), MBSE is the 

“formalized application of modeling to 

support system requirements, design, 

analysis, verification and validation activities 

beginning in the conceptual design phase and 

continuing throughout development and later 

life cycle phases”, (INCOSE, 2007). In this 

setting, it is envisioned that system 

development would evolve from a document-

centric activity to a model-centric one. This 

major shift in terms of processing information 

during the many phases related to the product 

life-span would allow for enhanced 

knowledge capture, improved communication 

between the various stakeholders, improved 

ability to manage system complexity and, 

thus, increase productivity and quality.  

Systems and operations in the Air 

Transportation domain are software-intensive, 

computationally distributed, human-in-the-

loop, with various measures of associated 

complexity
2
 and representing great “potential 

for accidents arising from unsafe interactions 

among non-failed components” (Fleming, 

Leveson, Placke, 2013). Apparently, as Air 

Traffic Control (ATC) and Air Traffic 

Management (ATM) systems in particular, 

and other purpose systems in general, become 

more dependent on automation with the 

purpose to secure the realization of future 

demands, “human controllers will begin to 

shift from direct control to supervision of 

automation, which can complicate human 

decision-making” (Ibid.). Thus, dependability 
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on safety-critical and reliable systems will 

increase substantially. In the present context, 

and unless otherwise stated, a system will 

represent a software system. This is 

particularly true for software employed in 

safety-critical systems. Given the expectation 

that software elements in these, or other 

specific application, systems must not fail, 

and that software solution and development 

become ever more complex, see (Cernosek, 

Naiburg, 2004), this assumption is even more 

applicable. Hence the advent of model based 

approaches to software engineering. 

An interesting related work to ATC and 

code generation from models can be found in 

(Whittle, Kwan, Saboo, 2005). The authors in 

this report were able to automatically generate 

code from scenarios of intended behavior and 

integrate it with the – then under development 

– existing CTAS (Center TRACON 

Automation System) system and tested with 

satisfactory success. The CTAS system 

provides automation tools for planning and 

controlling air traffic arrival. More recently, 

Carrozza et. al. (2013) have investigated the 

use of MDE (Model-Driven Engineering) in 

the development of new generation ATM 

systems. 

The sections that follow present the use 

of modeling tools employed to specify and 

model systems. Some case studies are given. 

This study reflects an initial investigation to 

assess the feasibility of adopting different 

methods of software development; and, 

because of the academic nature of this study, 

tool utilization herein is made under the 

premise of a non-commercial license.
3
 

The remainder of this paper is organized 

as follows: a brief overview of related model-

based ideas and concepts is given in Section 

2. Section 2 is further structured into four 

subsections: subsection 2.1 briefly introduces 

the MDA approach, subsection 2.2 reviews 

the xtUML language used for modeling, 

executing and transforming models, 

subsection 2.3 details the modeling case study 

for the Flight Plan Processing in ATC 

systems, and the ADS-B modeling case study 

is mentioned in subsection 2.4. Section 3 

presents a discussion of the modeling process 
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and verification with two formal specification 

languages and the corresponding tools, by 

highlighting their commonalities and 

comparing their distinct modeling features 

and functionalities. Sections 4 presents a brief 

discussion on MDD adoption and alternatives. 

Final remarks are given in Section 5. Section 

6 lists the references used and Section 7 

contains a list of Acronyms. 

2. MODEL DRIVEN ENGINEERING 

In this Section, attention will be given 

to the system modeling approach eventually 

applied for verification by model execution. 

Caprio (2008), from Techtarget.com, defines 

Model-Driven Development (MDD) as the 

use of “models to capture high level 

information, usually expressed informally, 

and to automate its implementation, either by 

compiling models to produce executables, or 

by using them to facilitate the manual 

development of executables.” Markus Völter 

in (Völter, 2010) underlines the one great 

advantage attained through model-driven 

development by arguing that conceptual 

system architecture and implementation 

details or technology decisions are easier to 

evolve during development when decoupled. 

This goes hand-in-hand with the idea of 

productivity, as mentioned above with the 

MBSE approach. The main goal of MDD is 

explicitly summarized by Atkinson and 

Kühne, (2003): “The underlying motivation 

for MDD is to improve productivity.” Once 

again, the idea connected to efficiency of the 

production process – and, thus, with all 

production phases – is brought under scrutiny. 

Hence, these model-based process and, more 

specifically, model-driven development, are 

clearly aligned.  

MDD is mainly concerned with the 

development of software systems as dictated 

by the Model-Driven Engineering (MDE), a 

broad systems engineering discipline where 

models are the central artifacts of 

development and “used to communicate 

design decisions and generate other design 

artifacts”, (Milicev, 2009). According to 

Jones (2010) 20% of defects encountered on 

software have their origin traced back to 

requirement specification; and up to 35% of 

them are related to coding alone. Hence, the 

need for efficient software design and 

development approaches is justified. It is 

hoped that MBSE and the like represent 

important steps toward this end. Some view 

Model-Driven Architecture (MDA) as a way 

forward in this direction. 

2.1. Model Driven Architecture 

MDA is OMG’s (Object Management 

Group) particular solution to the MDD 

approach and is based on standards set forth 

by OMG itself, (Thomas, 2004). Concerning 

the software development, Miller and Mukerji 

(2003) write that MDA “is an approach to 

using models in software development. [It] is 

another small step on the long road to turning 

our craft into an engineering discipline”. 

Moreover, we read from Milicev (2009) that 

the building of complex software systems 

should adopt the same techniques employed 

in other engineering disciplines, in which 

models and modeling are amply exploited.  

MDA corresponds to a set of guidelines 

aiding the process of taking software 

requirement specifications and structuring 

them as computer models; it builds upon 

OMG’s Unified Modeling Language (UML) 

2.0 and Object Constraint Language (OCL), 

(Whittle, 2006). The key concept of MDA is 

to separate those “things” that change rapidly 

from those “things” that do not. Things that 

change rapidly are those related to the 

underlying platform technology: connectivity, 

architectures, hardware platforms, sensor 

technology, operating environments and so 

on. These evolve in a much faster pace than 

those concerned with business functionality 

and application behavior logic, such as, 

problem domain semantics, relations among 

domain concepts.  

The MDA development lifecycle is 

similar to the traditional development 

lifecycle, but emphasis is given to creation of 

semi-formal models, i.e., models that can be 

input to computer. There are two types of 

models: Platform-Independent Model (PIM), 

which are those containing the business logic 

and are independent of technological aspects, 

and the Platform-Specific Model (PSM), with 

business logic and technological aspects 
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modeled together. These models can be 

automatically transformed into one another 

while preserving semantics, usually 

transforming models from the higher abstract 

level to the lower implementation-level or 

transforming within the same level: e.g., PIM-

to-PIM, PIM-to-PSM, PSM-to-code. Observe 

here, that these transformations support 

automatic code generation. Hence, this 

model-driven approach, as with MDD more 

generally, treats software development as a 

chain of semantic preserving transformations 

between successive models, starting from 

early development phases: from requirements 

to analysis, to design, to implementation, to 

deployment. This is not achievable with UML 

alone. Though plain UML is strong in 

modeling structural aspects, it is weak in 

modeling behavior and thus the UML/OCL 

combination of the MDA approach helps 

define precise and unambiguous PIMs.  

One way to increase productivity is 

through software reuse. Reuse has been 

applied to a myriad of artifacts in software 

development, ranging from broad-scope 

development reuse applications such as 

product, process, technology, and experience 

to more development-specific artifacts such as 

software component, architecture and 

requirements, (Ferré, Vegas, 1999). Other 

important model-driven advantages include 

automatic code generation, verification and 

validation, automatic software documentation, 

or even efficient software requirements 

specifications management.  

For example, one could customize 

different software versions for a single target 

platform using one high-level software model 

as source. Alternatively, one could 

automatically generate code by way of high-

level software models – which captures the 

essential, non-platform specific 

implementation – and develop software across 

different platforms.  
In an independent study carried out by a 

middleware company, a 35% increase in 

productivity was reported to be achieved due 

to the adoption of the MDA approach, 

(Whittle, 2006). Although MDA requires 

more time and effort during the design phase, 

some measure of payoff is obtained in the 

implementation phase of development. It is 

thought that typically an average between 50-

90% of automatic generated code can be 

achieved (Whittle, 2006). It is believed that 

these efficiency measures will increase with 

software component reuse in other subsequent 

projects. 

The Executable and Translatable UML, 

or simply xtUML, which partially implements 

the MDA model transformation approach, is 

reviewed in the next subsection. 

2.2. Executable and Translatable UML 

The Shlaer-Mellor method, introduced 

in 1988, is an object-oriented software 

development method; see (Shlaer, Mellor, 

1996). This method is also known throughout 

the modeling community as Object-Oriented 

Systems Analysis or Object-Oriented 

Analysis. The method has evolved to produce 

what is currently known as the eXecutable 

and Translatable UML (xtUML), which is 

both a software development method and a 

highly abstract software language. xtUML is a 

UML profile and some authors also refer to 

this development method simply as 

Executable UML. xtUML is considered by 

some to be a “full-fledged programming 

language”, refer to (Starr, 2014).  

xtUML employs unambiguous 

semantics by way of an action language, 

called Object Action Language or simply 

OAL, that allows models to be executed and 

verified against requirements early in the 

development life-cycle. This action language 

is used within the model itself. Four main 

types of modeling elements are used during 

model development and are summarized as: 

 Components, Package diagrams: 

for model organization; 

 Class diagrams: for data structure; 

 State Machines: for specifying 

model behavior; 

 OAL: for action description. 

Other modeling diagrams can be used in 

BridgePoint during the modeling process to 

help explain some behavior, even though 

these are not considered for model 

verification or code generation purposes. 

The BridgePoint modeling tool 

implements xtUML and, among other tools, it 

is being used as a software development 



 5 

research asset at Atech. BrigdePoint 

integrates a UML editor, a model verifier – 

model debugging – and a code generation 

functionality called model transformation by 

the model compiler. It was developed by 

Mentor Graphics and has been reported in the 

literature to be used in industry projects at 

SAAB (Wedin, 2010), Ericsson AB – 

Sweeden, the Australian Research Council 

(Stien, 2006) and others
4
, and is endorsed by 

some in the academy as well: Australian 

National University (Flint, et. al. 2004), 

Chalmers University of Technology and 

University of Gothenburg (Burden, 2012, 

2014). 

A couple of modeling case studies are 

presented in Subsections 2.3 and 2.4. 

2.3. The ATC Case study 

Details on comparison of some 

commercial modeling tools may be found in 

(Souza, Aguchiku, Gonzalez, 2015). In order 

to compare modeling tools in that study, a 

benchmark problem was devised to better 

understand tool modeling capabilities toward 

the goal of obtaining the same – or very 

similar, at least – target model. This 

benchmark problem consisted of a very 

simplified version of the Flight Data 

Processing (FDP) system present in current 

Air Traffic Control (ATC) systems which are 

deployed throughout the many ATC centers 

located in various parts in Brazil. The 

intended FDP model version of the real 

system is limited in scope but it should 

consist of software components able to keep 

track of the main states associated to actual 

(aircraft) flight plan changes during its life-

cycle.  

2.3.1. The Benchmark Problem 

The Flight Data Processing system 

considered is basically a system that oversees 

and keeps historical and current record of all 

controlled, civilian manned flights inside the 

corresponding volume over a prescribed 

territorial region. All controlled flights in this 

volume of interest are meticulously managed 

following a strict set of protocols intended for 
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safety and performance. For this goal, the 

FDP creates a flight plan or a computer 

representation of where and when each 

aircraft will fly in this volume of interest. 

Flight plan evolution is performed according 

to what is called flight plan control states: 

Inactive, Pre-Active, Active, Terminated, and 

Archived. In particular, the Active state is 

further classified by an additional set of 

states, or sub-states. These sub-states detail 

flight control handover operations between 

different control sectors, controllers’ 

consoles, and even air-traffic control centers. 

An extensive set of flight markers or flight 

configuration parameters related to the flight 

plan is created in the FDP system and 

continuously updated. Some of these deal 

with how and when the system triggers flight 

plan stage evolution specifically. Different 

types of flight plans are defined in the FDP 

system. The FDP system continually receives 

messages from an external entity, or from 

human intervention. Some messages specify 

which type of flight plan should be created 

internally to represent every real, physical 

flight stance. Depending on the type of a 

recently created flight plan, flight states 

follow a particular evolution pattern with its 

own set of state-transition specification 

requirements.  
The benchmark problem is defined as 

an FDP model that entails a flight state (and 

sub-state) managing system implementation 

for some different flight plan types. Messages 

to the FDP system model should be internally 

created in the model or received from external 

model user (operator) interface. From the 

brief description above for the FDP system, 

one is able to identify many software 

modeling elements: structural aspects of the 

model, such as components and classes 

(attributes, methods); behavioral aspects, 

including state-machines and messages; and 

actions. 

2.3.2. System Modeling  

System modeling requires a shift in the 

developer’s way of thinking and many good 

practice modeling recommendations are 

available, see (Starr, 1999) for example. 

Additionally, as with the Object Oriented 

design approach, MDD demands more effort 



 6 

into modeling in early stages of development, 

which can be offset by cost needed for 

implementation and testing. 

This design consists of four main 

software elements: two elements to deal with 

message exchange – a Generator and a 

Receiver, an element to represent the concept 

of Flight Plans and a Flight Plan Manager that 

will manage flight plans. The communication 

between these elements has been modeled via 

ports, using asynchronous messages, also 

known as signals. 

The Message Generator can send either 

a flight plan creation message or a command 

message. The later changes the state of the 

lifecycle of a flight plan. The message sent by 

the Message Generator is received by the 

Message Receiver in one of its ports. After the 

reception of the signal, the Message Receiver 

interprets the message and sends a message 

(related to the signal received) to the 

Manager. The Manager interprets the 

message and deals with it by creating a new 

instance of a Flight Plan, or by sending a 

command to an instance of an existing flight 

plan. These actions have been mostly 

modeled on statecharts from the pool of 

elements. Two different simulations were 

performed with each modeling tool: an 

automatic test and a human-in-the-loop test. 

The human-in-the-loop test configuration was 

also used to assess how the model could 

interact with non-modeled elements (like 

legacy code).  

In BridgePoint, the proposed software 

elements were modeled as classes. The 

Manager and Flight Plan were related in a 

one-to-many association and were placed in a 

single component (that will be referenced as 

the Manager component), while the Message 

Generator and the Message Receiver were 

placed in different components (Generator 

and Receiver components, respectively, Fig. 

1), since asynchronous message exchange 

may be done only between components. The 

components communicate to each other via 

ports and interfaces. 

 

 

Figure 1: FDP system model components (upper view). The Manager component contains State (PLN) and Sub-

State (PLN_substates) Classes. The Sub-State statechart is displayed in the bottom, right view. 

 

Two interfaces were created, one 

containing the messages exchanged between 

the Manager and the Receiver components, 

and the other between the Receiver and the 

Generator. The actions were modeled in the 

classes statecharts, and were coded using 

Object Action Language (OAL), the action 

language used by BridgePoint. The resulting 

model was compiled, generating C code 

which then resulted in an executable file – on 

BridgePoint this is a single process. 
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Model interfaces define signals, the 

direction of messages and parameters that 

those signals carry. Inside some classes, the 

behavior of their instances was designed 

using statecharts. It is possible to create a 

class statechart, that define the behavior of the 

class itself, or an instance statechart, that 

defines the behavior of each one of the 

classes’ instances. Both statecharts are not 

able to represent sub-states, being necessary 

to create a different class with a statechart to 

represent the possible sub-states of a state. 

The transitions on the statechart representing 

the flight plan sub-states were modeled to be 

managed by its parent statechart. 

2.3.3. Model Verification 

The general idea for model execution/ 

debugging is as follows: the Generator sends 

a signal (asynchronous message) to the 

Receiver. The Receiver decodes the signal, 

and sends another message to the Manager, 

informing which action should occur 

(creation, canceling, activation or other) and 

which flight plan the message is destined to. 

When the action occurs (the target flight plan 

is affected), the flight plan logs the current 

time and a brief description of the action in a 

file that is hardcoded in the model. An 

example of this description could be “Flight 

Plan with Id: 5 transitioned to pre-active 

state”. This logging functionality is not 

originally part of BridgePoint and, therefore, 

it should be coded externally in a third party 

environment and then added to the model as 

an External Entity. As mentioned previously, 

two configurations were simulated: an 

automatic test and a human-in-the-loop test. 

The automatic test was done by use of OAL 

to generate the messages in the generator’s 

statechart. The human-in-the-loop test was 

done by way of a Java user interface, devised 

specifically for model execution. This UI was 

introduced in the model as a “realized 

component”, replacing the Generator 

component entirely. The execution was 

carried out in BridgePoint using the Verifier 

tool. Under this tool, the external code used 

(i.e., the code regarding the External Entity 

and Realized Component elements) was 

coded in Java language. If it were executed as 

a standalone application, it is assumed that 

this code would have to be manually 

integrated to the generated code or operated 

asynchronously as a distinct application; this 

standalone execution has not been yet 

performed. 

2.3.4. Code Generation 

Code generation is a one-step model-to-

text transformation process in BridgePoint. 

Model diagrams and OAL are translated into 

target code language without creating an 

intermediate platform specific model (PSM). 

Legacy code written on the same target 

language, when available, can be attached 

together with model generated code. 

In this regard, BridgePoint is not fully 

MDA compliant. Platform specificities are 

introduced into the development through the 

model compiler; persistence, multi-tasking, 

distributed computing and implementation of 

data structures are not dealt with OAL. These 

implementation issues are considered by the 

model compiler through markings, or the 

definition of some hardware and software 

architectural decisions. It generates code from 

models and was conceived to possess a 

modular structure, thus allowing 

customization to extend its original 

functionalities. Reuse of the software 

architecture is achieved by employing the 

same model compiler configurations to other 

application developments. A binary 

executable is also created by compiling code 

following this same code generation process. 

2.4. ADS-B Tracking Service 

A second model-driven related 

implementation case study consists in 

publishing flight Automatic Dependent 

Surveillance – Broadcast, or ADS-B, data in a 

Data Distribution Service (DDS) network. 

ADS-B data is received and decoded with a 

low-cost, in-house hardware implementation 

solution consisting of an antenna and a 

portable pocket-sized computer. A dedicated 

software was developed with a modeling tool 

for publishing ADS-B derived tracks in a 

DDS bus network which are then consumed 

by other workstations belonging to this same 

network. The ADS-B data is used to track 

aircraft positions in a 3D virtual Geographic 
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Information System (GIS) environment, also 

under development at Atech. 

3. FORMAL SPECIFICATION 

The verification by formal methods, and 

model checking in particular, is also an 

important pursued study objective. Research 

is being carried out in order to investigate the 

use of formal specification models and to 

perform systematic exhaustive checking of 

these models, or model checking, in contrast 

to the deductive verification or the theorem 

proving alternative, the other great approach 

category under the field of formal verification 

methods. Two case studies are presented next.  

3.1. First Case Study: CSP modeling 

This first study is a simplified version 

of the benchmark problem presented in 

Section 2. Since the benchmark problem 

involves message exchange between different 

components, a study is being carried out by 

specifying these system components using 

Communicating Sequential Process, or CSP, 

(Hoare, 1985). CSP is a process algebra that 

may be used as a formal specification 

language for describing interactions in 

concurrent systems. As a specification 

language, elements (mostly components) of a 

system are modeled as processes in CSP. 

Processes are seen as black boxes and it is 

possible to observe only what happens on the 

process interface. These observable elements 

are called events. Events may represent 

atomic actions or communication channels, in 

which processes may synchronize actions and 

message exchange through a channel. CSP 

has different semantics to express the 

meaning of processes and the one that will be 

focused in this section is the denotational 

semantics. The denotational semantics uses 

sets of behaviors to describe processes; for 

example, the Traces Model describes a 

process with the set of all possible traces of 

the process. 

This case study employs FDR3, a recent 

replacement version for the Failures and 

Divergence Refinement tool, (Gibson-

Robinson et. al., 2014) in order to verify the 

specified system. The main goals of this case 

study are to assess if and how CSP may be 

used to specify Air Traffic Control systems 

and what properties of ATC systems may be 

verified using FDR. 

The FDR tool is a model checker, more 

specifically, a refinement checker. In CSP, the 

basic idea of refinement is a relation between 

processes; it is said that a process A is refined 

by a process B if everything allowed in 

process B is allowed by process A. This 

refinement relation is always related to a 

denotational semantics model. For example, 

the process A is refined by process B with 

respect to traces (Traces Model) if all possible 

traces of process B are also possible for 

process A. Besides refinement checking, FDR 

can check presence of deadlock, divergence 

and non-determinism. 

The specified system is a simpler 

version of the system presented in Section 

2.3.1. Flight plan control states are the same, 

though sub-states are not considered in this 

initial assessment for simplicity. Flight plan 

evolution is also simplified: every flight plan 

is created on the Inactive state; after receiving 

a pre-activation message, an internal process 

decides if the flight plan evolves to the Pre-

Active state or if it remains on the Inactive 

state. While in the Inactive state, the flight 

plan only acknowledges the pre-activation 

message and ignores all others. This same 

procedure is adopted correspondingly for the 

other states: the system receives a message, if 

the message is the one that orders the flight 

plan to evolve to the next state, an internal 

process decides if the flight plan evolves to 

the next state. State transition sequence is 

ordered as follows: Inactive, Pre-Active, 

Active, Terminated and Archived. When the 

flight plan reaches the Archived state, it can 

no longer evolve and, thus, ignores any 

additional message.  

The system high-level structure is the 

same: a message Generator sends messages to 

a Receiver; the Receiver decodes the message 

and passes the information to a Manager that 

deals with flight plan creation and evolution. 

The Generator, Receiver, Manager and 

each flight plan were modeled as single 

processes in the CSP specification. Since the 

communication between the Generator and 

the Receiver is asynchronous, a buffer was 
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included and modeled as a process emulating 

the use of asynchronous message exchange. 

The communication between Receiver and 

Manager and between Manager and a flight 

plan is synchronous. The Generator sends a 

message with an instruction (either create, 

pre-activate, activate, terminate, archive) and 

a flight plan id number to the buffer using 

channel “in”. The Receiver consumes 

messages from the buffer, through channel 

“out” and sends a message with the flight plan 

id number using the channel corresponding to 

the message instruction, e.g., if a creation 

message is consumed, the Receiver will send 

a message using the creation channel. The 

Manager receives the message and then 

proceeds sending a message to the specified 

flight plan, sending a message using the 

channel corresponding to the instruction. A 

communication diagram (generated on FDR) 

of the system may be seen in Fig. 2. 

 

Figure 2: Tool generated communication diagram 

based on FDP system CSP modeling. 

 

In this case study, an investigation was 

conducted in order to determine what could 

be verified with FDR. Using refinement 

checking, it is possible to check if the 

specification defines a system behavior that it 

must possess, or if the specification does not 

contain a behavior that the system must not 

present. For example, it is possible to verify if 

a specification has a determined trace by 

checking if a process with only that trace 

refines the specification. If it refines the 

specification, it means that the trace is 

possible for the specification. In this case 

study, it was verified whether the Manager 

sent a message to a flight plan after receiving 

a set of messages. By exploiting other 

denotational semantics models with the FDR 

tool – mainly, Failures and Divergence Model 

– we expect to further expand the quantity 

and improve the quality of the verification 

trials under consideration. The use of 

asynchronous communication through the 

buffering process described above introduced 

some concurrency to the specification. Using 

FDR it was possible to verify that the system 

was deadlock free (though this result was 

expected, since the processes of the 

specification were simple). 

The verification on FDR was 

responsible for some changes on the 

specification of the system. Like most model 

checkers, FDR presents the state explosion 

problem (Clarke et. al., 2012). Because of this 

problem, it was feasible to verify the system 

with only two Flight Plan processes and by 

limiting the number of buffer messages to 

three messages. Initially, it was intended to 

employ an asynchronous communication 

between the Receiver and the Manager with 

an additional message buffer; though this was 

later changed to a synchronous 

communication. The verification was 

performed on a CentOS 6.7 workstation with 

Intel Core i5 (Quad-Core, 2.50GHz) and 8GB 

of RAM. 

3.2. Second Case study: SMV modeling 

The second case study makes use of the 

AutoFocus3 tool
5
 (Hölzl & Feilkas, 2007), 

which is an open source modeling tool, built 

over the Eclipse platform. This tool 

implements a broad set of functionality, 

ranging from Requirements Engineering, 

Modeling and Simulation, Code Generation 

and Deployment to Testing / Formal 

Verification. It integrates the NuSMV tool 

(Cimatti et. al., 2002), a symbolic model 

checker jointly developed by a few groups in 

                                                 
5
 Visit http://af3.fortiss.org/ 

http://af3.fortiss.org/
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the academia
6
 which evolved from the SMV 

(McMillan, 1993). The NuSMV tool performs 

formal verification on models by analyzing 

them as synchronous finite-state systems in 

the form of an automaton, that is, a 

representation of a formal language. One can 

express properties using Computation Tree 

Logic (CTL) or Linear Temporal Logic (LTL) 

and produce a formula that will be used by 

NuSMV to formally verify the model for 

those properties. 

The methodology of the present 

subsection consisted in designing the 

architecture, simulating the exchange 

(sending) of messages and applying the model 

checking techniques via NuSMV. This 

technique consists in (model) checking a 

CTL/LTL property. If the property holds, a 

SUCCESS status is received. If it does not 

hold, a FAILURE status is received and a 

counterexample is generated. 

As in the case study of Section 2, the 

case study described in this section was also 

based on the FDP requirements of a real ATC 

system implementation. 

The modeling problem is described as 

follows: control of a flight must be transferred 

from one ATC sector/center to another. An 

instance of the flight plan exists in each of the 

two sector/centers involved. A flight plan in 

this specific scenario can be in active, not 

active or in transference status. Flight plans in 

the active status of two adjacent sectors at the 

same time are forbidden. Flight control of an 

aircraft will eventually be passed along to the 

next sector/center through a procedure known 

as handover. Though not a system required 

specification, handover will be modeled to be 

accomplished within ten time units. The 

receiving sector first acknowledges control 

handover as in transference and then 

communicates acceptance of control of that 

flight. The communication is made via 

messages, such as EST, ACP, and HND, 

which are exchanged by flight controllers. 

A description of the Flight Plan State 

Machine, or FPSM, is presented next. FPSM-

1 will designate the flight plan instance of the 

sector giving control over a flight; likewise, 

FPSM-2 will represent the flight plan instance 

                                                 
6
 Visit http://nusmv.fbk.eu/ 

of the receiver of flight control, Fig. 3. Both 

FPSMs start in the Preactive state. When the 

system receives an EST message, it 

transitions to Active not controlled state for 

both FPSMs. When it receives an ACP 

message, it transitions to Active controlled 

state in FPSM-1 and it starts a countdown 

timer from ten time units, which is a 

modeling feature used in the model for 

demonstration purposes. When it receives a 

HND message or when the timer reaches 

three time units, FPSM-1 transitions to Active 

transference proposition. An ACP message 

after that takes FPSM-1 to Active not 

controlled and FPSM-2 to Active controlled. 

If it receives an ACP message within the 

remaining three time units, FPSM-1 

transitions back to Active not controlled  and 

FPSM-2 to Active controlled, whereas if it 

does not, a timeout signal is generated and 

FPSM-1 transitions back to the Active 

controlled state. 

This system was modeled using the 

AutoFocus 3 tool with the purpose of model 

checking it for safety properties with the 

NuSMV tool. Safety properties resemble 

undesired behavior which should never 

happen in a distributed system. The two 

safety properties to be verified in this study 

are given as follows: 

1) It is forbidden that more than one 

flight plan instance is active at the same time; 

2) When FPSM-1 is active, FPSM-2 is 

in transference and an ACP message is 

received, synchronization must occur so that 

FPSM-1 is not active and FPSM-2 is active. 

The first version of the architecture was 

modeled with two FPSMs and a GUI panel to 

send the messages during Simulation. The 

messages sent are, in order: “EST Sync” to 

both FPSMs, ACP to one of the FPSM, HND 

to the same FPSM and “ACP Sync” to both 

FPSM. 

The verification analysis showed that 

there were no unreachable states in any of the 

two state machines considered in this model; 

an expected outcome due to model 

construction.  

Through simulation, it was noticed that 

an additional model component, named 

Controller State Machine (CSM), was needed 

to check if the flight plan was active in any of  
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Figure 3: Implementation of two State Machines in AutoFocus 3 used for flight control transferring simulation 

between two ATC sectors. The user Panel, in the lower left corner, contains buttons for user input during 

simulation. 

the two FPSMs, so that the ACP message 

would be ignored and property 1) could be 

assured. Property 2) was successfully 

checked.  

The main objective of the Controller is 

to ensure the system works as expected and, 

therefore, it has to filter the messages it 

receives. A description of the CSM is 

presented next. It contains three states: Not 

Controlled, Controlled and InTransference. 

The Controller starts on Not Controlled state 

and persists this state, unless it detects that 

one of the flight plan instances status is 

Controlled. It also filters the initial messages: 

it only forwards the ACP message if it is sent 

by one instance only. When in Controlled 

state, it transitions to InTransference state 

only if it receives a HND message from a 

controlled instance or if it detects the flight 

plan instance status changed to 

InTransference. Then, it forwards the HND 

message. When on InTransference state, it 

forwards any message it receives and if none 

of the flight plan instance status is 

InTransference, it transitions back to 

Controlled state. 

The second version of the architecture is 

shown in Fig. 4 and includes the CSM, 

detailed in Fig. 5, so that properties 1) and 2) 

can be verified, see Fig. 6. As stated 

previously, the counterexample analysis, 

when generated, helped identify possible 

flaws that could then be corrected and 

contributed for improving the overall system 

model architecture. 

Analysis with the AutoFocus3 tool 

showed that unreachable states were not to be 

found for any of the two state machines; this 

was expected by their construction. 

4. DISCUSSION 

Although the use of MDD techniques 

and tools are apparently widespread in the 

academia and in industry, it is not unanimity. 

There are many who do not advocate support 

for them as the solution to systems and 

software development woes and hurdles; see 

(Den Haan, 2008; 2009). This conundrum is 

by no means simply polarized into a 

dichotomy about the effectiveness of MDD. 

Other proponents have come forward and 
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have contributed with additional viewpoints, 

such as agile methods and encouragement of 

use of domain specific languages to name a 

couple, all motivated with the general concern 

that systems development should be a more 

structured activity targeting an increase of 

efficiency. Whittle, Hutchinson, Rouncefield 

(2014), commenting on analyses based on a 

recent questionnaire research about adoption 

of model-driven engineering techniques in 

industry, claim: “Some companies have 

reported great success with it, whereas others 

have failed horribly.” Some believe that 

failure related to model-driven techniques has 

to do with UML itself. M. Fowler (2003), for 

one, emphasizes that UML and other OMG 

standards are the platform used for 

development, the opposite of what MDA 

boasts about being able to provide for the 

development lifecycle: platform 

independence. He further argues that UML 

does not enable the sought for “jump” of 

abstraction level that many times it is praised 

to be able to offer for software development.  

Though xtUML was based on UML2.0, 

and this was devised to have real time 

applications in mind, it seems that the 

industry has not accepted UML 2.0, a much 

anticipated major revision of the UML 

standard, the way it was intended in the first 

place by not reflecting “the literature on 

empirical studies of software modeling or 

software design studies”, (Whittle, et.al., 

2014). This seems to corroborate a claim by 

D. Thomas (2003) that UML 2 is too 

complicated and that one should “seek 

simpler solutions to adding yet another layer 

of meta-stuff”, when referring to MDA’s 

adopted MOF. Strong UML adherents, like B. 

Selic (2010) and S. Mellor (2006), oppose 

this view and defend that UML2 deserves no 

criticism when employed for real-time and 

even embedded applications. Other standards, 

however, such as MARTE, QoS-FT (Quality 

of Service – Fault Tolerant), fUML, UML 

profiles for security, etc. have been defined to 

circumvent industry perceived UML 

shortcomings. 

Indeed, the functionality of code 

generation from models is overestimated and 

we have yet to find or implement design 

examples that handle well fault treatment 

scenarios and concurrency situations in 

complex, distributed systems. The quality of 

automatically generated code remains to be 

analyzed more carefully. Nevertheless, we 

understand some important gain from model 

driven development in systems (software) 

engineering is evident in terms of reuse, 

documentation, and maintenance. 

The Lockheed Martin experience with 

MDD has produced interesting 

recommendations noteworthy of mention 

(Schmidt, 2006): 

 Avoiding a one-language-does-all 

approach by exploiting multiple 

Domain Specific Languages in project 

development for narrow, well-

understood domains; 

 Automated generation of partial 

implementation artifacts; 

 Integration of legacy assets through 

reverse engineering; 

 Model verification and checking. 

These surely decrease the designer’s or 

developer’s expectations with respect to 

MDD automatically generated artifacts. 

Hutchinson et.al. (2014) agree with the above 

when they state that code generation solely 

should not drive MDE adoption. 

Some measure of moderation 

concerning the adoption of MDA tools is 

advised: “However, used in moderation and 

where appropriate, UML and MDA code 

generators are useful tools, although not the 

panaceas that some would have us believe”, 

(Thomas, 2004). 

5. CONCLUDING REMARKS 

This preliminary note on software 

modeling is a partial spin-off of the ongoing 

research effort into evaluation of model-based 

methods and tools for software production. 

It is expected that this effort will lead to 

a mapping of methods, modeling tools to 

work with in order to achieve the goals set 

forth by the MBSE approach and apply them 

to in-house Software Engineering. 

Two types of simulations were 

presented in order to analyze the system 

specification and model. Model checking is 

applied to verify formal specifications of a 

system, a verification process which is 
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performed automatically. Analysis on 

verification results is intuitive and, hence, this 

type of simulation is simple once what is to 

be verified is clearly defined. The other 

simulation discussed was model execution  

 

 

Figure 4: FDP system model architecture in AutoFocus 3. 

 

 

Figure 5: Modeling for the Controller State Machine (CSM). 

 

 

Figure 6: Success results for the verification of properties 1) and 2). 

 

employed to verify a model of a system. 

Model execution is inherently a more 

laborious process, since every – or the 

majority of it – possible scenarios should be 

manually tested; either by coding these 

scenarios in the model or by human-in-the-

loop simulations. This simulation, however, 

represents a development artifact closer to the 

implementation, since code may be generated 

directly from the model itself, while model 

checking verifies if the problem is well 

specified. Even if a system is well specified, 
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the resulting system may still contain errors, 

given the gap between the specification and 

the system; whereas the gap between the 

model and the system is ideally smaller, 

resulting in fewer differences between them. 

This discussion reflects the main difference 

between formal specification and system 

modeling. It is expected that further studies 

and research will decrease the gap between 

specification and model. 

“Good design, sound architecture and 

common sense play as much a role in 

development using” model-driven methods as 

in traditional style approach; see (Den Haan, 

2009)
7
. Raising the level of abstraction for 

development is what MBSE is about. 

Although mistakes introduced at a higher 

level of abstraction can impact the project as a 

whole, MBSE can help detect mistakes in 

early development phases and even help 

avoiding some mistakes from occurring at all. 

Working with models – however simple they 

may be and yet complete versions of business 

logic – is more convenient for analysis and 

verification through model execution or 

formal methods, during product development 

phases, and also for product maintenance 

phase after product deployment. This is 

mainly due to the ease of understanding of a 

well-structured model construction and by 

facilitating communication amongst team 

members. 

We close this partial presentation on the 

issue with important comments from Frank 

Truyen. According to Truyen (2006), the 

transition from a traditional software 

development approach to a model driven one 

is a major overtaking, an effort requiring 

“formal planning, orchestration and 

sponsorship.” Moreover, Truyen states that 

the this transition process demands thorough 

planning for its implementation over a period 

of many years, a detailed management of 

resources, and subsequent continuous 

monitoring of activities results. He mentions 

that this model driven shift should be 

supported and funded by management. 

“Moving too fast, out-of-sequence, or 

proceeding without proper planning simply 

puts the whole transition process at risk. The 

                                                 
7
 Contributed by Vinay Kulkarni on Aug 07, 2008 

08:05. 

main ingredient for ensured success is 

keeping the end-vision of the transition in 

sight.” (Ibid) 
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7. LIST OF ACRONYMS 

3D Three-Dimensional 

ADS-B Automatic Dependent 

Surveillance – Broadcast 

ATC Air Traffic Control 

ATM Air Traffic Management 

CSM Controller State Machine 

CSP Communicating Sequential 

Process 

CTAS Center TRACON Automation 

System 

CTL Computation Tree Logic 

DDS Data Distribution Service 

FDR Failures and Divergence 

Refinement 

FDP Flight Data Processing 

FPSM Flight Plan State Machine 

INCOSE International Council on 

Systems Engineering 

MARTE Modeling and Analysis of 

Real-Time and Embedded 

MBSE Model Based Systems 

Engineering 

MDA Model-Driven Architecture 

MDD Model-Driven Development 

MDE Model-Driven Engineering 

MOF Meta-Object Facility 

LTL Linear Temporal Logic 

OAL Object Action Language 

OCL Object Constraint Language 

OMG Object Management Group 

PIM Platform Independent Model 

PSM Platform Specific Model 

SMV Symbolic Model Verifier 

UML Unified Modeling Language 

TRACON Terminal Radar Approach 

Control 

xtUML Excutable, Translatable UML 
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