
 1

THE MODEL-DRIVEN DEVELOPMENT APPROACH & FORMAL

SPECIFICATION FOR AIR-TRAFFIC CONTROL SYSTEM OPERATIONS:

PRACTICAL COMMENTS AND CASE STUDIES

Fabio Seiti Aguchiku
*

Atech Negócios em Tecnologia S/A

Rua do Rócio, 313 – 2º andar, São Paulo, SP, (11) 3103-4600, FAX (11) 3103-4601.

faguchiku@atech.com.br

Rafael Leme Costa
*

Atech Negócios em Tecnologia S/A

Rua do Rócio, 313 – 2º andar, São Paulo, SP, (11) 3103-4600, FAX (11) 3103-4601.

rlcosta@atech.com.br

Eric Conrado de Souza

Atech Negócios em Tecnologia S/A

Rua do Rócio, 313 – 2º andar, São Paulo, SP, (11) 3103-4600, FAX (11) 3103-4601.

ecsouza@atech.com.br

Newton Maruyama

Dept. de Engenharia Mecatrônica e Sistemas Mecânicos – Escola Politécnica da Universidade de

São Paulo, Av. Prof. Mello Moraes, 2231, São Paulo, SP, (11) 3091-5337.

maruyama@usp.br

ABSTRACT

This note is part of continuing research that aims at introducing model-driven development

techniques to system development cycle. Some modeling tools and analysis technics are reviewed

and applied to achieve improved productivity for the ATC system development process. These tools

represent a large set of resources, ranging from modeling and formal specification languages to

software for model-driven development. Case studies are presented for modeling and analyses of

various functionalities of a simplified version for a flight plan manager, currently in operation at

various air-traffic centers throughout Brazil. Also considered, an application for receiving and

processing flight tracks from ADS-B data.

Keywords: Model-Driven Development, Formal Specification, Model Checking, Air-Traffic

Control, ADS-B Communication

*
 This note is the partial result of preliminary research into modeling methods being developed for two projects in the

masters of engineering program at the Polytechnic School of the University of São Paulo.

mailto:faguchiku@atech.com.br
mailto:rlcosta@atech.com.br
mailto:ecsouza@atech.com.br
mailto:maruyama@usp.br

 2

1. INTRODUCTION

Software Engineering can be

understood as “the development of reliable

and high quality software systems on

schedule” and within budget constraints,

(Ferré, Vegas, 1999), see also (Basili,

Caldiera, 1992). Great effort has been

dedicated to better characterize what methods

should be used to achieve these high-level

goals which ultimately define Software

Engineering. One possible approach to

software engineering is based on the Model-

Based Systems Engineering (MBSE) concept.

According to INCOSE (International Council

on Systems Engineering), MBSE is the

“formalized application of modeling to

support system requirements, design,

analysis, verification and validation activities

beginning in the conceptual design phase and

continuing throughout development and later

life cycle phases”, (INCOSE, 2007). In this

setting, it is envisioned that system

development would evolve from a document-

centric activity to a model-centric one. This

major shift in terms of processing information

during the many phases related to the product

life-span would allow for enhanced

knowledge capture, improved communication

between the various stakeholders, improved

ability to manage system complexity and,

thus, increase productivity and quality.

Systems and operations in the Air

Transportation domain are software-intensive,

computationally distributed, human-in-the-

loop, with various measures of associated

complexity
2
 and representing great “potential

for accidents arising from unsafe interactions

among non-failed components” (Fleming,

Leveson, Placke, 2013). Apparently, as Air

Traffic Control (ATC) and Air Traffic

Management (ATM) systems in particular,

and other purpose systems in general, become

more dependent on automation with the

purpose to secure the realization of future

demands, “human controllers will begin to

shift from direct control to supervision of

automation, which can complicate human

decision-making” (Ibid.). Thus, dependability

2
 Sometimes defined as intellectual unmanageability.

on safety-critical and reliable systems will

increase substantially. In the present context,

and unless otherwise stated, a system will

represent a software system. This is

particularly true for software employed in

safety-critical systems. Given the expectation

that software elements in these, or other

specific application, systems must not fail,

and that software solution and development

become ever more complex, see (Cernosek,

Naiburg, 2004), this assumption is even more

applicable. Hence the advent of model based

approaches to software engineering.

An interesting related work to ATC and

code generation from models can be found in

(Whittle, Kwan, Saboo, 2005). The authors in

this report were able to automatically generate

code from scenarios of intended behavior and

integrate it with the – then under development

– existing CTAS (Center TRACON

Automation System) system and tested with

satisfactory success. The CTAS system

provides automation tools for planning and

controlling air traffic arrival. More recently,

Carrozza et. al. (2013) have investigated the

use of MDE (Model-Driven Engineering) in

the development of new generation ATM

systems.

The sections that follow present the use

of modeling tools employed to specify and

model systems. Some case studies are given.

This study reflects an initial investigation to

assess the feasibility of adopting different

methods of software development; and,

because of the academic nature of this study,

tool utilization herein is made under the

premise of a non-commercial license.
3

The remainder of this paper is organized

as follows: a brief overview of related model-

based ideas and concepts is given in Section

2. Section 2 is further structured into four

subsections: subsection 2.1 briefly introduces

the MDA approach, subsection 2.2 reviews

the xtUML language used for modeling,

executing and transforming models,

subsection 2.3 details the modeling case study

for the Flight Plan Processing in ATC

systems, and the ADS-B modeling case study

is mentioned in subsection 2.4. Section 3

presents a discussion of the modeling process

3
 Different licensing will apply if and when conditions

of software use vary.

 3

and verification with two formal specification

languages and the corresponding tools, by

highlighting their commonalities and

comparing their distinct modeling features

and functionalities. Sections 4 presents a brief

discussion on MDD adoption and alternatives.

Final remarks are given in Section 5. Section

6 lists the references used and Section 7

contains a list of Acronyms.

2. MODEL DRIVEN ENGINEERING

In this Section, attention will be given

to the system modeling approach eventually

applied for verification by model execution.

Caprio (2008), from Techtarget.com, defines

Model-Driven Development (MDD) as the

use of “models to capture high level

information, usually expressed informally,

and to automate its implementation, either by

compiling models to produce executables, or

by using them to facilitate the manual

development of executables.” Markus Völter

in (Völter, 2010) underlines the one great

advantage attained through model-driven

development by arguing that conceptual

system architecture and implementation

details or technology decisions are easier to

evolve during development when decoupled.

This goes hand-in-hand with the idea of

productivity, as mentioned above with the

MBSE approach. The main goal of MDD is

explicitly summarized by Atkinson and

Kühne, (2003): “The underlying motivation

for MDD is to improve productivity.” Once

again, the idea connected to efficiency of the

production process – and, thus, with all

production phases – is brought under scrutiny.

Hence, these model-based process and, more

specifically, model-driven development, are

clearly aligned.

MDD is mainly concerned with the

development of software systems as dictated

by the Model-Driven Engineering (MDE), a

broad systems engineering discipline where

models are the central artifacts of

development and “used to communicate

design decisions and generate other design

artifacts”, (Milicev, 2009). According to

Jones (2010) 20% of defects encountered on

software have their origin traced back to

requirement specification; and up to 35% of

them are related to coding alone. Hence, the

need for efficient software design and

development approaches is justified. It is

hoped that MBSE and the like represent

important steps toward this end. Some view

Model-Driven Architecture (MDA) as a way

forward in this direction.

2.1. Model Driven Architecture

MDA is OMG’s (Object Management

Group) particular solution to the MDD

approach and is based on standards set forth

by OMG itself, (Thomas, 2004). Concerning

the software development, Miller and Mukerji

(2003) write that MDA “is an approach to

using models in software development. [It] is

another small step on the long road to turning

our craft into an engineering discipline”.

Moreover, we read from Milicev (2009) that

the building of complex software systems

should adopt the same techniques employed

in other engineering disciplines, in which

models and modeling are amply exploited.

MDA corresponds to a set of guidelines

aiding the process of taking software

requirement specifications and structuring

them as computer models; it builds upon

OMG’s Unified Modeling Language (UML)

2.0 and Object Constraint Language (OCL),

(Whittle, 2006). The key concept of MDA is

to separate those “things” that change rapidly

from those “things” that do not. Things that

change rapidly are those related to the

underlying platform technology: connectivity,

architectures, hardware platforms, sensor

technology, operating environments and so

on. These evolve in a much faster pace than

those concerned with business functionality

and application behavior logic, such as,

problem domain semantics, relations among

domain concepts.

The MDA development lifecycle is

similar to the traditional development

lifecycle, but emphasis is given to creation of

semi-formal models, i.e., models that can be

input to computer. There are two types of

models: Platform-Independent Model (PIM),

which are those containing the business logic

and are independent of technological aspects,

and the Platform-Specific Model (PSM), with

business logic and technological aspects

 4

modeled together. These models can be

automatically transformed into one another

while preserving semantics, usually

transforming models from the higher abstract

level to the lower implementation-level or

transforming within the same level: e.g., PIM-

to-PIM, PIM-to-PSM, PSM-to-code. Observe

here, that these transformations support

automatic code generation. Hence, this

model-driven approach, as with MDD more

generally, treats software development as a

chain of semantic preserving transformations

between successive models, starting from

early development phases: from requirements

to analysis, to design, to implementation, to

deployment. This is not achievable with UML

alone. Though plain UML is strong in

modeling structural aspects, it is weak in

modeling behavior and thus the UML/OCL

combination of the MDA approach helps

define precise and unambiguous PIMs.

One way to increase productivity is

through software reuse. Reuse has been

applied to a myriad of artifacts in software

development, ranging from broad-scope

development reuse applications such as

product, process, technology, and experience

to more development-specific artifacts such as

software component, architecture and

requirements, (Ferré, Vegas, 1999). Other

important model-driven advantages include

automatic code generation, verification and

validation, automatic software documentation,

or even efficient software requirements

specifications management.

For example, one could customize

different software versions for a single target

platform using one high-level software model

as source. Alternatively, one could

automatically generate code by way of high-

level software models – which captures the

essential, non-platform specific

implementation – and develop software across

different platforms.
In an independent study carried out by a

middleware company, a 35% increase in

productivity was reported to be achieved due

to the adoption of the MDA approach,

(Whittle, 2006). Although MDA requires

more time and effort during the design phase,

some measure of payoff is obtained in the

implementation phase of development. It is

thought that typically an average between 50-

90% of automatic generated code can be

achieved (Whittle, 2006). It is believed that

these efficiency measures will increase with

software component reuse in other subsequent

projects.

The Executable and Translatable UML,

or simply xtUML, which partially implements

the MDA model transformation approach, is

reviewed in the next subsection.

2.2. Executable and Translatable UML

The Shlaer-Mellor method, introduced

in 1988, is an object-oriented software

development method; see (Shlaer, Mellor,

1996). This method is also known throughout

the modeling community as Object-Oriented

Systems Analysis or Object-Oriented

Analysis. The method has evolved to produce

what is currently known as the eXecutable

and Translatable UML (xtUML), which is

both a software development method and a

highly abstract software language. xtUML is a

UML profile and some authors also refer to

this development method simply as

Executable UML. xtUML is considered by

some to be a “full-fledged programming

language”, refer to (Starr, 2014).

xtUML employs unambiguous

semantics by way of an action language,

called Object Action Language or simply

OAL, that allows models to be executed and

verified against requirements early in the

development life-cycle. This action language

is used within the model itself. Four main

types of modeling elements are used during

model development and are summarized as:

 Components, Package diagrams:

for model organization;

 Class diagrams: for data structure;

 State Machines: for specifying

model behavior;

 OAL: for action description.

Other modeling diagrams can be used in

BridgePoint during the modeling process to

help explain some behavior, even though

these are not considered for model

verification or code generation purposes.

The BridgePoint modeling tool

implements xtUML and, among other tools, it

is being used as a software development

 5

research asset at Atech. BrigdePoint

integrates a UML editor, a model verifier –

model debugging – and a code generation

functionality called model transformation by

the model compiler. It was developed by

Mentor Graphics and has been reported in the

literature to be used in industry projects at

SAAB (Wedin, 2010), Ericsson AB –

Sweeden, the Australian Research Council

(Stien, 2006) and others
4
, and is endorsed by

some in the academy as well: Australian

National University (Flint, et. al. 2004),

Chalmers University of Technology and

University of Gothenburg (Burden, 2012,

2014).

A couple of modeling case studies are

presented in Subsections 2.3 and 2.4.

2.3. The ATC Case study

Details on comparison of some

commercial modeling tools may be found in

(Souza, Aguchiku, Gonzalez, 2015). In order

to compare modeling tools in that study, a

benchmark problem was devised to better

understand tool modeling capabilities toward

the goal of obtaining the same – or very

similar, at least – target model. This

benchmark problem consisted of a very

simplified version of the Flight Data

Processing (FDP) system present in current

Air Traffic Control (ATC) systems which are

deployed throughout the many ATC centers

located in various parts in Brazil. The

intended FDP model version of the real

system is limited in scope but it should

consist of software components able to keep

track of the main states associated to actual

(aircraft) flight plan changes during its life-

cycle.

2.3.1. The Benchmark Problem

The Flight Data Processing system

considered is basically a system that oversees

and keeps historical and current record of all

controlled, civilian manned flights inside the

corresponding volume over a prescribed

territorial region. All controlled flights in this

volume of interest are meticulously managed

following a strict set of protocols intended for

4
 Visit xtUML.org

safety and performance. For this goal, the

FDP creates a flight plan or a computer

representation of where and when each

aircraft will fly in this volume of interest.

Flight plan evolution is performed according

to what is called flight plan control states:

Inactive, Pre-Active, Active, Terminated, and

Archived. In particular, the Active state is

further classified by an additional set of

states, or sub-states. These sub-states detail

flight control handover operations between

different control sectors, controllers’

consoles, and even air-traffic control centers.

An extensive set of flight markers or flight

configuration parameters related to the flight

plan is created in the FDP system and

continuously updated. Some of these deal

with how and when the system triggers flight

plan stage evolution specifically. Different

types of flight plans are defined in the FDP

system. The FDP system continually receives

messages from an external entity, or from

human intervention. Some messages specify

which type of flight plan should be created

internally to represent every real, physical

flight stance. Depending on the type of a

recently created flight plan, flight states

follow a particular evolution pattern with its

own set of state-transition specification

requirements.
The benchmark problem is defined as

an FDP model that entails a flight state (and

sub-state) managing system implementation

for some different flight plan types. Messages

to the FDP system model should be internally

created in the model or received from external

model user (operator) interface. From the

brief description above for the FDP system,

one is able to identify many software

modeling elements: structural aspects of the

model, such as components and classes

(attributes, methods); behavioral aspects,

including state-machines and messages; and

actions.

2.3.2. System Modeling

System modeling requires a shift in the

developer’s way of thinking and many good

practice modeling recommendations are

available, see (Starr, 1999) for example.

Additionally, as with the Object Oriented

design approach, MDD demands more effort

 6

into modeling in early stages of development,

which can be offset by cost needed for

implementation and testing.

This design consists of four main

software elements: two elements to deal with

message exchange – a Generator and a

Receiver, an element to represent the concept

of Flight Plans and a Flight Plan Manager that

will manage flight plans. The communication

between these elements has been modeled via

ports, using asynchronous messages, also

known as signals.

The Message Generator can send either

a flight plan creation message or a command

message. The later changes the state of the

lifecycle of a flight plan. The message sent by

the Message Generator is received by the

Message Receiver in one of its ports. After the

reception of the signal, the Message Receiver

interprets the message and sends a message

(related to the signal received) to the

Manager. The Manager interprets the

message and deals with it by creating a new

instance of a Flight Plan, or by sending a

command to an instance of an existing flight

plan. These actions have been mostly

modeled on statecharts from the pool of

elements. Two different simulations were

performed with each modeling tool: an

automatic test and a human-in-the-loop test.

The human-in-the-loop test configuration was

also used to assess how the model could

interact with non-modeled elements (like

legacy code).

In BridgePoint, the proposed software

elements were modeled as classes. The

Manager and Flight Plan were related in a

one-to-many association and were placed in a

single component (that will be referenced as

the Manager component), while the Message

Generator and the Message Receiver were

placed in different components (Generator

and Receiver components, respectively, Fig.

1), since asynchronous message exchange

may be done only between components. The

components communicate to each other via

ports and interfaces.

Figure 1: FDP system model components (upper view). The Manager component contains State (PLN) and Sub-

State (PLN_substates) Classes. The Sub-State statechart is displayed in the bottom, right view.

Two interfaces were created, one

containing the messages exchanged between

the Manager and the Receiver components,

and the other between the Receiver and the

Generator. The actions were modeled in the

classes statecharts, and were coded using

Object Action Language (OAL), the action

language used by BridgePoint. The resulting

model was compiled, generating C code

which then resulted in an executable file – on

BridgePoint this is a single process.

 7

Model interfaces define signals, the

direction of messages and parameters that

those signals carry. Inside some classes, the

behavior of their instances was designed

using statecharts. It is possible to create a

class statechart, that define the behavior of the

class itself, or an instance statechart, that

defines the behavior of each one of the

classes’ instances. Both statecharts are not

able to represent sub-states, being necessary

to create a different class with a statechart to

represent the possible sub-states of a state.

The transitions on the statechart representing

the flight plan sub-states were modeled to be

managed by its parent statechart.

2.3.3. Model Verification

The general idea for model execution/

debugging is as follows: the Generator sends

a signal (asynchronous message) to the

Receiver. The Receiver decodes the signal,

and sends another message to the Manager,

informing which action should occur

(creation, canceling, activation or other) and

which flight plan the message is destined to.

When the action occurs (the target flight plan

is affected), the flight plan logs the current

time and a brief description of the action in a

file that is hardcoded in the model. An

example of this description could be “Flight

Plan with Id: 5 transitioned to pre-active

state”. This logging functionality is not

originally part of BridgePoint and, therefore,

it should be coded externally in a third party

environment and then added to the model as

an External Entity. As mentioned previously,

two configurations were simulated: an

automatic test and a human-in-the-loop test.

The automatic test was done by use of OAL

to generate the messages in the generator’s

statechart. The human-in-the-loop test was

done by way of a Java user interface, devised

specifically for model execution. This UI was

introduced in the model as a “realized

component”, replacing the Generator

component entirely. The execution was

carried out in BridgePoint using the Verifier

tool. Under this tool, the external code used

(i.e., the code regarding the External Entity

and Realized Component elements) was

coded in Java language. If it were executed as

a standalone application, it is assumed that

this code would have to be manually

integrated to the generated code or operated

asynchronously as a distinct application; this

standalone execution has not been yet

performed.

2.3.4. Code Generation

Code generation is a one-step model-to-

text transformation process in BridgePoint.

Model diagrams and OAL are translated into

target code language without creating an

intermediate platform specific model (PSM).

Legacy code written on the same target

language, when available, can be attached

together with model generated code.

In this regard, BridgePoint is not fully

MDA compliant. Platform specificities are

introduced into the development through the

model compiler; persistence, multi-tasking,

distributed computing and implementation of

data structures are not dealt with OAL. These

implementation issues are considered by the

model compiler through markings, or the

definition of some hardware and software

architectural decisions. It generates code from

models and was conceived to possess a

modular structure, thus allowing

customization to extend its original

functionalities. Reuse of the software

architecture is achieved by employing the

same model compiler configurations to other

application developments. A binary

executable is also created by compiling code

following this same code generation process.

2.4. ADS-B Tracking Service

A second model-driven related

implementation case study consists in

publishing flight Automatic Dependent

Surveillance – Broadcast, or ADS-B, data in a

Data Distribution Service (DDS) network.

ADS-B data is received and decoded with a

low-cost, in-house hardware implementation

solution consisting of an antenna and a

portable pocket-sized computer. A dedicated

software was developed with a modeling tool

for publishing ADS-B derived tracks in a

DDS bus network which are then consumed

by other workstations belonging to this same

network. The ADS-B data is used to track

aircraft positions in a 3D virtual Geographic

 8

Information System (GIS) environment, also

under development at Atech.

3. FORMAL SPECIFICATION

The verification by formal methods, and

model checking in particular, is also an

important pursued study objective. Research

is being carried out in order to investigate the

use of formal specification models and to

perform systematic exhaustive checking of

these models, or model checking, in contrast

to the deductive verification or the theorem

proving alternative, the other great approach

category under the field of formal verification

methods. Two case studies are presented next.

3.1. First Case Study: CSP modeling

This first study is a simplified version

of the benchmark problem presented in

Section 2. Since the benchmark problem

involves message exchange between different

components, a study is being carried out by

specifying these system components using

Communicating Sequential Process, or CSP,

(Hoare, 1985). CSP is a process algebra that

may be used as a formal specification

language for describing interactions in

concurrent systems. As a specification

language, elements (mostly components) of a

system are modeled as processes in CSP.

Processes are seen as black boxes and it is

possible to observe only what happens on the

process interface. These observable elements

are called events. Events may represent

atomic actions or communication channels, in

which processes may synchronize actions and

message exchange through a channel. CSP

has different semantics to express the

meaning of processes and the one that will be

focused in this section is the denotational

semantics. The denotational semantics uses

sets of behaviors to describe processes; for

example, the Traces Model describes a

process with the set of all possible traces of

the process.

This case study employs FDR3, a recent

replacement version for the Failures and

Divergence Refinement tool, (Gibson-

Robinson et. al., 2014) in order to verify the

specified system. The main goals of this case

study are to assess if and how CSP may be

used to specify Air Traffic Control systems

and what properties of ATC systems may be

verified using FDR.

The FDR tool is a model checker, more

specifically, a refinement checker. In CSP, the

basic idea of refinement is a relation between

processes; it is said that a process A is refined

by a process B if everything allowed in

process B is allowed by process A. This

refinement relation is always related to a

denotational semantics model. For example,

the process A is refined by process B with

respect to traces (Traces Model) if all possible

traces of process B are also possible for

process A. Besides refinement checking, FDR

can check presence of deadlock, divergence

and non-determinism.

The specified system is a simpler

version of the system presented in Section

2.3.1. Flight plan control states are the same,

though sub-states are not considered in this

initial assessment for simplicity. Flight plan

evolution is also simplified: every flight plan

is created on the Inactive state; after receiving

a pre-activation message, an internal process

decides if the flight plan evolves to the Pre-

Active state or if it remains on the Inactive

state. While in the Inactive state, the flight

plan only acknowledges the pre-activation

message and ignores all others. This same

procedure is adopted correspondingly for the

other states: the system receives a message, if

the message is the one that orders the flight

plan to evolve to the next state, an internal

process decides if the flight plan evolves to

the next state. State transition sequence is

ordered as follows: Inactive, Pre-Active,

Active, Terminated and Archived. When the

flight plan reaches the Archived state, it can

no longer evolve and, thus, ignores any

additional message.

The system high-level structure is the

same: a message Generator sends messages to

a Receiver; the Receiver decodes the message

and passes the information to a Manager that

deals with flight plan creation and evolution.

The Generator, Receiver, Manager and

each flight plan were modeled as single

processes in the CSP specification. Since the

communication between the Generator and

the Receiver is asynchronous, a buffer was

 9

included and modeled as a process emulating

the use of asynchronous message exchange.

The communication between Receiver and

Manager and between Manager and a flight

plan is synchronous. The Generator sends a

message with an instruction (either create,

pre-activate, activate, terminate, archive) and

a flight plan id number to the buffer using

channel “in”. The Receiver consumes

messages from the buffer, through channel

“out” and sends a message with the flight plan

id number using the channel corresponding to

the message instruction, e.g., if a creation

message is consumed, the Receiver will send

a message using the creation channel. The

Manager receives the message and then

proceeds sending a message to the specified

flight plan, sending a message using the

channel corresponding to the instruction. A

communication diagram (generated on FDR)

of the system may be seen in Fig. 2.

Figure 2: Tool generated communication diagram

based on FDP system CSP modeling.

In this case study, an investigation was

conducted in order to determine what could

be verified with FDR. Using refinement

checking, it is possible to check if the

specification defines a system behavior that it

must possess, or if the specification does not

contain a behavior that the system must not

present. For example, it is possible to verify if

a specification has a determined trace by

checking if a process with only that trace

refines the specification. If it refines the

specification, it means that the trace is

possible for the specification. In this case

study, it was verified whether the Manager

sent a message to a flight plan after receiving

a set of messages. By exploiting other

denotational semantics models with the FDR

tool – mainly, Failures and Divergence Model

– we expect to further expand the quantity

and improve the quality of the verification

trials under consideration. The use of

asynchronous communication through the

buffering process described above introduced

some concurrency to the specification. Using

FDR it was possible to verify that the system

was deadlock free (though this result was

expected, since the processes of the

specification were simple).

The verification on FDR was

responsible for some changes on the

specification of the system. Like most model

checkers, FDR presents the state explosion

problem (Clarke et. al., 2012). Because of this

problem, it was feasible to verify the system

with only two Flight Plan processes and by

limiting the number of buffer messages to

three messages. Initially, it was intended to

employ an asynchronous communication

between the Receiver and the Manager with

an additional message buffer; though this was

later changed to a synchronous

communication. The verification was

performed on a CentOS 6.7 workstation with

Intel Core i5 (Quad-Core, 2.50GHz) and 8GB

of RAM.

3.2. Second Case study: SMV modeling

The second case study makes use of the

AutoFocus3 tool
5
 (Hölzl & Feilkas, 2007),

which is an open source modeling tool, built

over the Eclipse platform. This tool

implements a broad set of functionality,

ranging from Requirements Engineering,

Modeling and Simulation, Code Generation

and Deployment to Testing / Formal

Verification. It integrates the NuSMV tool

(Cimatti et. al., 2002), a symbolic model

checker jointly developed by a few groups in

5
 Visit http://af3.fortiss.org/

http://af3.fortiss.org/

 10

the academia
6
 which evolved from the SMV

(McMillan, 1993). The NuSMV tool performs

formal verification on models by analyzing

them as synchronous finite-state systems in

the form of an automaton, that is, a

representation of a formal language. One can

express properties using Computation Tree

Logic (CTL) or Linear Temporal Logic (LTL)

and produce a formula that will be used by

NuSMV to formally verify the model for

those properties.

The methodology of the present

subsection consisted in designing the

architecture, simulating the exchange

(sending) of messages and applying the model

checking techniques via NuSMV. This

technique consists in (model) checking a

CTL/LTL property. If the property holds, a

SUCCESS status is received. If it does not

hold, a FAILURE status is received and a

counterexample is generated.

As in the case study of Section 2, the

case study described in this section was also

based on the FDP requirements of a real ATC

system implementation.

The modeling problem is described as

follows: control of a flight must be transferred

from one ATC sector/center to another. An

instance of the flight plan exists in each of the

two sector/centers involved. A flight plan in

this specific scenario can be in active, not

active or in transference status. Flight plans in

the active status of two adjacent sectors at the

same time are forbidden. Flight control of an

aircraft will eventually be passed along to the

next sector/center through a procedure known

as handover. Though not a system required

specification, handover will be modeled to be

accomplished within ten time units. The

receiving sector first acknowledges control

handover as in transference and then

communicates acceptance of control of that

flight. The communication is made via

messages, such as EST, ACP, and HND,

which are exchanged by flight controllers.

A description of the Flight Plan State

Machine, or FPSM, is presented next. FPSM-

1 will designate the flight plan instance of the

sector giving control over a flight; likewise,

FPSM-2 will represent the flight plan instance

6
 Visit http://nusmv.fbk.eu/

of the receiver of flight control, Fig. 3. Both

FPSMs start in the Preactive state. When the

system receives an EST message, it

transitions to Active not controlled state for

both FPSMs. When it receives an ACP

message, it transitions to Active controlled

state in FPSM-1 and it starts a countdown

timer from ten time units, which is a

modeling feature used in the model for

demonstration purposes. When it receives a

HND message or when the timer reaches

three time units, FPSM-1 transitions to Active

transference proposition. An ACP message

after that takes FPSM-1 to Active not

controlled and FPSM-2 to Active controlled.

If it receives an ACP message within the

remaining three time units, FPSM-1

transitions back to Active not controlled and

FPSM-2 to Active controlled, whereas if it

does not, a timeout signal is generated and

FPSM-1 transitions back to the Active

controlled state.

This system was modeled using the

AutoFocus 3 tool with the purpose of model

checking it for safety properties with the

NuSMV tool. Safety properties resemble

undesired behavior which should never

happen in a distributed system. The two

safety properties to be verified in this study

are given as follows:

1) It is forbidden that more than one

flight plan instance is active at the same time;

2) When FPSM-1 is active, FPSM-2 is

in transference and an ACP message is

received, synchronization must occur so that

FPSM-1 is not active and FPSM-2 is active.

The first version of the architecture was

modeled with two FPSMs and a GUI panel to

send the messages during Simulation. The

messages sent are, in order: “EST Sync” to

both FPSMs, ACP to one of the FPSM, HND

to the same FPSM and “ACP Sync” to both

FPSM.

The verification analysis showed that

there were no unreachable states in any of the

two state machines considered in this model;

an expected outcome due to model

construction.

Through simulation, it was noticed that

an additional model component, named

Controller State Machine (CSM), was needed

to check if the flight plan was active in any of

 11

Figure 3: Implementation of two State Machines in AutoFocus 3 used for flight control transferring simulation

between two ATC sectors. The user Panel, in the lower left corner, contains buttons for user input during

simulation.

the two FPSMs, so that the ACP message

would be ignored and property 1) could be

assured. Property 2) was successfully

checked.

The main objective of the Controller is

to ensure the system works as expected and,

therefore, it has to filter the messages it

receives. A description of the CSM is

presented next. It contains three states: Not

Controlled, Controlled and InTransference.

The Controller starts on Not Controlled state

and persists this state, unless it detects that

one of the flight plan instances status is

Controlled. It also filters the initial messages:

it only forwards the ACP message if it is sent

by one instance only. When in Controlled

state, it transitions to InTransference state

only if it receives a HND message from a

controlled instance or if it detects the flight

plan instance status changed to

InTransference. Then, it forwards the HND

message. When on InTransference state, it

forwards any message it receives and if none

of the flight plan instance status is

InTransference, it transitions back to

Controlled state.

The second version of the architecture is

shown in Fig. 4 and includes the CSM,

detailed in Fig. 5, so that properties 1) and 2)

can be verified, see Fig. 6. As stated

previously, the counterexample analysis,

when generated, helped identify possible

flaws that could then be corrected and

contributed for improving the overall system

model architecture.

Analysis with the AutoFocus3 tool

showed that unreachable states were not to be

found for any of the two state machines; this

was expected by their construction.

4. DISCUSSION

Although the use of MDD techniques

and tools are apparently widespread in the

academia and in industry, it is not unanimity.

There are many who do not advocate support

for them as the solution to systems and

software development woes and hurdles; see

(Den Haan, 2008; 2009). This conundrum is

by no means simply polarized into a

dichotomy about the effectiveness of MDD.

Other proponents have come forward and

 12

have contributed with additional viewpoints,

such as agile methods and encouragement of

use of domain specific languages to name a

couple, all motivated with the general concern

that systems development should be a more

structured activity targeting an increase of

efficiency. Whittle, Hutchinson, Rouncefield

(2014), commenting on analyses based on a

recent questionnaire research about adoption

of model-driven engineering techniques in

industry, claim: “Some companies have

reported great success with it, whereas others

have failed horribly.” Some believe that

failure related to model-driven techniques has

to do with UML itself. M. Fowler (2003), for

one, emphasizes that UML and other OMG

standards are the platform used for

development, the opposite of what MDA

boasts about being able to provide for the

development lifecycle: platform

independence. He further argues that UML

does not enable the sought for “jump” of

abstraction level that many times it is praised

to be able to offer for software development.

Though xtUML was based on UML2.0,

and this was devised to have real time

applications in mind, it seems that the

industry has not accepted UML 2.0, a much

anticipated major revision of the UML

standard, the way it was intended in the first

place by not reflecting “the literature on

empirical studies of software modeling or

software design studies”, (Whittle, et.al.,

2014). This seems to corroborate a claim by

D. Thomas (2003) that UML 2 is too

complicated and that one should “seek

simpler solutions to adding yet another layer

of meta-stuff”, when referring to MDA’s

adopted MOF. Strong UML adherents, like B.

Selic (2010) and S. Mellor (2006), oppose

this view and defend that UML2 deserves no

criticism when employed for real-time and

even embedded applications. Other standards,

however, such as MARTE, QoS-FT (Quality

of Service – Fault Tolerant), fUML, UML

profiles for security, etc. have been defined to

circumvent industry perceived UML

shortcomings.

Indeed, the functionality of code

generation from models is overestimated and

we have yet to find or implement design

examples that handle well fault treatment

scenarios and concurrency situations in

complex, distributed systems. The quality of

automatically generated code remains to be

analyzed more carefully. Nevertheless, we

understand some important gain from model

driven development in systems (software)

engineering is evident in terms of reuse,

documentation, and maintenance.

The Lockheed Martin experience with

MDD has produced interesting

recommendations noteworthy of mention

(Schmidt, 2006):

 Avoiding a one-language-does-all

approach by exploiting multiple

Domain Specific Languages in project

development for narrow, well-

understood domains;

 Automated generation of partial

implementation artifacts;

 Integration of legacy assets through

reverse engineering;

 Model verification and checking.

These surely decrease the designer’s or

developer’s expectations with respect to

MDD automatically generated artifacts.

Hutchinson et.al. (2014) agree with the above

when they state that code generation solely

should not drive MDE adoption.

Some measure of moderation

concerning the adoption of MDA tools is

advised: “However, used in moderation and

where appropriate, UML and MDA code

generators are useful tools, although not the

panaceas that some would have us believe”,

(Thomas, 2004).

5. CONCLUDING REMARKS

This preliminary note on software

modeling is a partial spin-off of the ongoing

research effort into evaluation of model-based

methods and tools for software production.

It is expected that this effort will lead to

a mapping of methods, modeling tools to

work with in order to achieve the goals set

forth by the MBSE approach and apply them

to in-house Software Engineering.

Two types of simulations were

presented in order to analyze the system

specification and model. Model checking is

applied to verify formal specifications of a

system, a verification process which is

 13

performed automatically. Analysis on

verification results is intuitive and, hence, this

type of simulation is simple once what is to

be verified is clearly defined. The other

simulation discussed was model execution

Figure 4: FDP system model architecture in AutoFocus 3.

Figure 5: Modeling for the Controller State Machine (CSM).

Figure 6: Success results for the verification of properties 1) and 2).

employed to verify a model of a system.

Model execution is inherently a more

laborious process, since every – or the

majority of it – possible scenarios should be

manually tested; either by coding these

scenarios in the model or by human-in-the-

loop simulations. This simulation, however,

represents a development artifact closer to the

implementation, since code may be generated

directly from the model itself, while model

checking verifies if the problem is well

specified. Even if a system is well specified,

 14

the resulting system may still contain errors,

given the gap between the specification and

the system; whereas the gap between the

model and the system is ideally smaller,

resulting in fewer differences between them.

This discussion reflects the main difference

between formal specification and system

modeling. It is expected that further studies

and research will decrease the gap between

specification and model.

“Good design, sound architecture and

common sense play as much a role in

development using” model-driven methods as

in traditional style approach; see (Den Haan,

2009)
7
. Raising the level of abstraction for

development is what MBSE is about.

Although mistakes introduced at a higher

level of abstraction can impact the project as a

whole, MBSE can help detect mistakes in

early development phases and even help

avoiding some mistakes from occurring at all.

Working with models – however simple they

may be and yet complete versions of business

logic – is more convenient for analysis and

verification through model execution or

formal methods, during product development

phases, and also for product maintenance

phase after product deployment. This is

mainly due to the ease of understanding of a

well-structured model construction and by

facilitating communication amongst team

members.

We close this partial presentation on the

issue with important comments from Frank

Truyen. According to Truyen (2006), the

transition from a traditional software

development approach to a model driven one

is a major overtaking, an effort requiring

“formal planning, orchestration and

sponsorship.” Moreover, Truyen states that

the this transition process demands thorough

planning for its implementation over a period

of many years, a detailed management of

resources, and subsequent continuous

monitoring of activities results. He mentions

that this model driven shift should be

supported and funded by management.

“Moving too fast, out-of-sequence, or

proceeding without proper planning simply

puts the whole transition process at risk. The

7
 Contributed by Vinay Kulkarni on Aug 07, 2008

08:05.

main ingredient for ensured success is

keeping the end-vision of the transition in

sight.” (Ibid)

6. REFERENCES

ATKINSON, C., KÜHNE, T. “Model-Driven Development:

A Metamodeling Foundation”. IEEE Software, 2003.

September/October. p.36-41.

BASILI, V. R., CALDIERA, G. “A reference architecture for

the component factory”. ACM Transactions on Software

Engineering and Methodology, 1992. v.1 No. 1. p. 53-80.

BURDEN, H. Three Studies on Model Transformations -

Parsing, Generation and Ease of Use. 2012. Thesis for the

Degree of Licentiate of Philosophy. Chalmers University of

Technology and University of Gothenburg, Also: A

Scholarship Approach to Model-Driven Engineering,

Chalmers University of Technology, 2014, PhD dissertation.

CAPRIO, G. “The software factory: Making the most of

software reuse”. 2008. Available at:

<http://searchwindevelopment.techtarget.com/tip/The-

Software-Factory-Refactoring-an-industry>. Accessed on 15

Apr. 2014.

CARROZZA, G. et al. “Engineering Air Traffic Control

Systems with a Model-Driven Approach”. IEEE Software,

2013, May/June, 42-48.

CERNOSEK, G., NAIBURG, E. “The Value of Modeling”.

White paper, IBM/Rational Software, 2004, June.

CIMATTI, A., et. al. “NuSMV 2: An OpenSource Tool for

Symbolic Model Checking”. Proceedings of the 14th

International Conference on Computer Aided Verification

(CAV '02), 2002. Ed Brinksma and Kim Guldstrand Larsen

(Eds.), Springer-Verlag, London, UK, UK, p. 359-364.

CLARKE, E. M. et. al., “Model checking and the state

explosion problem”. Tools for Practical Software

Verification, 2012. Springer Berlin Heidelberg. p. 1-30.

DEN HAAN, J. D. “Eight reasons why Model-Driven

Development is dangerous”. June 27, 2009. Available at:

<http://www.theenterprisearchitect.eu/blog/2009/06/25/8-

reasons-why-model-driven-development-is-dangerous/>.

Accessed on 28 Aug. 2015.

DEN HAAN, J. D. “Eight Reasons Why Model-Driven

Approaches (will) Fail”. July 28, 2008. Available at:

<http://www.infoq.com/articles/8-reasons-why-MDE-

fails#Atk02>. Accessed on 16 Apr. 2014.

FERRÉ, X., VEGAS, S. “An Evaluation of Domain Analysis

Methods”. 4th CAiSE/IFIP8.1 International Workshop in

Evaluation of Modeling Methods in Systems Analysis and

Design - EMMSAD99, 1999.

FLEMING, C. H., LEVESON, N. G., PLACKE, S.,

“Assuring Safety of NextGen Procedures”, Tenth

USA/Europe Air Traffic Management Research and

Development Seminar (ATM2013), 2013.

FLINT, S., GARDNER, H., BOUGHTON, C.

“Executable/Translatable UML in Computing Education”.

Proceedings of the Sixth Australasian Conference on

Computing Education, 2004, v. 30.

FOWLER, M. “Platform Independent Malapropism”. 2003.

Available at: <http://martinfowler.com/bliki/Platform

IndependentMalapropism.html>. Accessed on 26 June 2015.

GIBSON-ROBINSON, T. et al. “FDR3—A modern

refinement checker for CSP”. Tools and Algorithms for the

Construction and Analysis of Systems, 2014. Springer Berlin

Heidelberg. p. 187-201.

HOARE, C. A. R. “Communicating Sequential Processes”.

Prentice-Hall, Inc., 1985, Upper Saddle River, NJ, USA.

HÖLZL, F., FEILKAS, M. “AutoFocus 3: a scientific tool

prototype for model-based development of component-based,

http://searchwindevelopment.techtarget.com/tip/The-Software-Factory-Refactoring-an-industry
http://searchwindevelopment.techtarget.com/tip/The-Software-Factory-Refactoring-an-industry
http://www.theenterprisearchitect.eu/blog/2009/06/25/8-reasons-why-model-driven-development-is-dangerous/
http://www.theenterprisearchitect.eu/blog/2009/06/25/8-reasons-why-model-driven-development-is-dangerous/
http://martinfowler.com/bliki/Platform%20IndependentMalapropism.html
http://martinfowler.com/bliki/Platform%20IndependentMalapropism.html

 15

reactive, distributed systems”. Proceedings of the 2007

International Dagstuhl conference on Model-based

engineering of embedded real-time systems, 2007 Springer-

Verlag, Berlin, Heidelberg, pp. 317-322.

HUTCHINSON, J., WHITTLE, J., ROUNCEFIELD, M.

“Model-driven engineering practices in industry: Social,

organizational and managerial factors that lead to success or

failure”. Science of Computer Programming, 2014. v.89. p.

141-161.

INCOSE. International Council on Systems Engineering,

Systems Engineering Vision 2020, INCOSE – TP – 2004 –

004 – 02, Version 2.03, September 2007, Available at:

<http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_2

0071003_v2_03.pdf>. Accessed on 28 Aug. 2015.

JONES, C., “Software Quality and Software Economics”,

Software Technology News, Vol.13, n.1, April, 2010, p.10-

14.

MCMILLAN, K. “Symbolic Model Checking”. Kluwer

Academic Publishers, 1993. Norwell, MA, USA.

MILICEV, D. “Model-Driven Development with Executable

UML”. Wiley Publishing, Inc., 2009.

MELLOR, S. “Demystifying UML”. 2006. Available at

<http://www.eetindia.co.in/ARTICLES/2006MAR/PDF/EEI

OL_2006MAR01_EMS_TA.pdfSOURCES=DOWNLOAD>

. Accessed on 25 Apr. 2014.

MILLER, J., MUKERJI, J. (editors). “MDA Guide Version

1.0.1”. Object Management Group, June 12, 2003. Doc. No.

OMG/2003-06-01, Available at:

<http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/pa

pers/MDAGuide101Jun03.pdf>. Accessed on 28 Aug. 2015.

PORTIER, B., ACKERMAN, L. “Model Driven

Development Misperceptions and Challenges”, January 21,

2009, Available at: <http://www.infoq.com/articles/mdd-

misperceptions-challenges>. Accessed on: 16 Apr. 2014.

SCHMIDT, D. C. “Model-Driven Engineering”. IEEE

Computer, 2006. February. p. 25-31.

SELIC, B. “UML2: Designed for Architects”, IEEE

Software, 2010. Nov/Dec.

SHLAER, S., MELLOR, S. J., “The Shlaer-Mellor Method”,

Project Technology, 1996. Available at:

<http://ooatool.com/docs/SMMethod96.pdf>, Accessed: 19

Oct. 2014

SOUZA, E. C., AGUCHIKU, F. S., GONZALEZ, A. L. “A

Comparison of Selected Tools for The Model Based

Engineering Approach to Complex Software Development”.

Seminário Embraer de Tecnologia e Inovação – SETI, June,

2015, São José dos Campos.

STARR, L., “xtUML.org website. xtUML - eXecutable

Translatable UML Open Source Editor”. Online:

<https://www.xtuml.org>. Accessed on 9 Apr. 2014.

STIEN, M. “Executable Translatable UML for Enterprise

Applications”, 2006. Available at: <http://www.softimp.

com.au/Common%20content/White%20Papers/xtUML%20f

or%20Enterprise%20Applications.pdf>. Accessed on 28

Aug. 2015.

THOMAS, D. “MDA: Revenge of the Modelers or UML

Utopia?”. IEEE Software, 2004. May/June. p.15-17.

THOMAS, D. “UML – Unified or Universal Modeling

Language?”, Journal of Object Technology, v.2, no. 1,

Jan/Fev, 2003, pp.7-12

TRUYEN, F. “The Fast Guide to Model Driven Architecture

– The Basics of Model Driven Architecture”. White paper,

Cephas Consulting Corp., 2006, January.

VÖLTER, M. “Architecture as a Language”. IEEE Software,

2010. March/April. p. 56-64.

WEDIN, E. “Applying Model-Driven Architecture and

SPARK ADA: A SPARK ADA Model Compiler for

xtUML”. 15th International Conference on Reliable Software

Technologies, 2010. SAAB Bofors Dynamics AB, Sweden.

WHITTLE, J., KWAN, R., SABOO, J. “From scenarios to

code: An air traffic control case study”. Software and System

Modeling, 2005. v. 4. p. 71-93.

WHITTLE, J., “Model-driven software development: What it

can and cannot do”. Information & Software Engineering,

George Mason University, slide presentation, 2006. Online:

<http://ewh.ieee.org/r2/wash_nova/computer/archives/jun06.

pdf>.

WHITTLE, J., HUTCHINSON, J., ROUNCEFIELD, M.

“The State of Practice in Model-Driven Engineering”, IEEE

SOFTWARE, May/June, 2014, p. 79-85

7. LIST OF ACRONYMS

3D Three-Dimensional

ADS-B Automatic Dependent

Surveillance – Broadcast

ATC Air Traffic Control

ATM Air Traffic Management

CSM Controller State Machine

CSP Communicating Sequential

Process

CTAS Center TRACON Automation

System

CTL Computation Tree Logic

DDS Data Distribution Service

FDR Failures and Divergence

Refinement

FDP Flight Data Processing

FPSM Flight Plan State Machine

INCOSE International Council on

Systems Engineering

MARTE Modeling and Analysis of

Real-Time and Embedded

MBSE Model Based Systems

Engineering

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MOF Meta-Object Facility

LTL Linear Temporal Logic

OAL Object Action Language

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PSM Platform Specific Model

SMV Symbolic Model Verifier

UML Unified Modeling Language

TRACON Terminal Radar Approach

Control

xtUML Excutable, Translatable UML

http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://oldsite.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/MDAGuide101Jun03.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/remodel/papers/MDAGuide101Jun03.pdf
http://ewh.ieee.org/r2/wash_nova/computer/archives/jun06.pdf
http://ewh.ieee.org/r2/wash_nova/computer/archives/jun06.pdf

